跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林惠雯
Hepi Hapsari Handayani
論文名稱: 印尼泗水及日惹地區福衞二號影像正射糾正及鑲嵌
Orthorectification and Mosaicking for FORMOSAT-2 Satellite Images in Surabaya and Yogyakarta of Indonesia
指導教授: 陳良健
Liang-Chien Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 太空及遙測研究中心 - 遙測科技碩士學位學程
Master of Science Program in Remote Sensing Science and Technology
畢業學年度: 98
語文別: 英文
論文頁數: 88
中文關鍵詞: 鑲嵌影像正射糾正福衞二號印尼泗水日惹
外文關鍵詞: Indonesia, Mosaicking, Orthorectification
相關次數: 點閱:12下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 建立空間資訊對於國家來說相當重要,印尼是一個由島嶼組成的國家,位於三大地球板塊交界處包括:太平洋板塊、印澳板塊及歐亞板塊,因此許多天然災害威脅著印尼地區。精確且可更新的空間資訊對於印尼政府相當重要,現今科技之快速發展,使得高解析度衛星影像之獲取更為便利且具經濟價值。由於印尼領土分佈遼闊需要大量衛星影像才可涵蓋,因此衛星影像正射糾正及鑲嵌為必要之處理,而要進行衛星影像正射糾正必須先進行衛星軌道修正。


    The establishment of spatial information is an important undertaking for any nation. Indonesia is an archipelagic country. Geographically, Indonesia lies on three different tectonic plates: the Pacific, Indo-Australian and Eurasian plates making natural disasters an ever present threat in the region. Accurate and up-dateable spatial information is the most important resource for the Indonesian government to counteract this threat. Recent leaps in technology leaps have made acquisition of high resolution satellite images possible, which leads the way to convenient and cost-efficient acquirement of image data. Since Indonesia is spread over such a large area, many satellite images are needed to cover the area, making orthorectification and mosaicking of those images important. Hence, orbit adjustment is a prerequisite for the image orthorectification and geometric correction.

    摘要……………………………………………………………….………………….……….i ENGLISH ABSTRACT…………………………….………………………………….……...ii ACKNOWLEDGEMENTS……………………………………………………..…………....iii TABLE OF CONTENTS………………………………………………………………..…....iv LIST OF FIGURES…………………………………………………..……………….…......vii LIST OF TABLES…………………………………………………………...........................xii LIST OF ACRONYMS…………………………………………………………………..….xiv CHAPTER 1. INTRODUCTION…………………………...……………………………...…1 1.1. Motivation………..…………….………………...…………………………….................1 1.2. Objectives and Scope…………………..............................................................................2 1.3. Background Information of the Study Area……………………………………..........…..3 1.3.1.General Information of the First Study Area…………………...………………..…3 1.3.2. General Information of the Second Study Area…………………………………....4 CHAPTER 2. LITERATURE RIVIEW……………………………………………...………..6 2.1. Sensor Orientation Modelling…………………………………...………………………..6 2.1.1.Rigorous Sensor Model (RSM)…………………………...…………...…………...6 2.1.2.Rational Function Model (RFM)………....................................................................7 2.2. Block Adjustment…………………………………………………………………………7 2.2.1. Block Adjustment Using Bundle Adjustment………………………...……………7 2.2.2.Block Adjustment Using Direct Georeferencing………………………...…………7 2.2.3.Block Adjustment Using the Rational Function Model (RFM)…………...………..8 2.3. Orthorectification…………………………………..……………………………………..9 2.3.1.Image Back Projection……………………………………………………………..10 2.4. Mosaicking……………………………………………………………………………….10 CHAPTER3. PROPOSED METHOD………………………………….……………………11 3.1. Evaluation of DEM Accuracy……………………………………………...………...….12 3.2. Preliminary Orbit Fitting…………………………………...……………………………13 3.3. Ray Tracing Technique…………………………...……………...……………………...14 3.4. Least Squares Collocation………………………………………………...……………..15 3.5. Orthorectification…………………………………...……………………….…………..16 3.5.1.Adaptive Patch Projection………………………………...………………………17 vii 3.6. Mosaicking………………………………………………………………………...…….18 CHPATER4. EXPERIMENTAL RESULTS………………………………………………...19 4.1. Data Acquisition…………………………………………………………………………19 4.1.1. FORMOSAT-2 Satellite Images…………………………………………………..19 4.1.2.Topographic Map…………………………………………...……………………..20 4.1.3.Digital Elevation Model (DEM)…………………………………………………...20 4.2. Results and Analysis………………………………………………………………...…..20 4.2.1.Evaluation of DEM Accuracy…………………………………………………...20 4.2.2. GCPs Marking…………………………………………………………………….24 4.2.3.Tie Point Collection……………………………………………………..…………26 4.2.4.Orbit Adjustment……………………………………………………….………….28 4.2.4.1. Orbit Adjustment of the First Study Area………………...…….…………30 4.2.4.1.1. Orbit Adjustment of the Entire Area in the First Study Area…..30 4.2.4.1.2. Orbit Adjustment of the Focus Area in the First Study Area…...34 4.2.4.2. Orbit adjustment of the Second Study Area……………………………...38 4.2.4.2.1. Orbit adjustment of the Entire Area in the Second Study Area...38 4.2.4.2.2. Orbit adjustment of the Focus Area in the Second Study Area...42 4.2.5. Orthorectification………………………………………………………………….46 4.2.6.Evaluation of Accuracy of Orthorectification…………………………………......50 4.2.6.1. Evaluation of Accuracy of Orthorectification for the First Study Area…...50 4.2.6.1.1. Evaluation of Accuracy of Orthorectification for the Entire Area in the First Study Area………………………………………….51 4.2.6.1.2. Evaluation of Accuracy of Orthorectification for the Focus Area in the First Study Area………………………………………….53 4.2.6.2. Evaluation of Accuracy in Orthorectification for the Second Study Area...56 4.2.6.2.1. Evaluation of Accuracy of Orthorectification for the Entire Area in the Second Study Area………………………...…………….56 4.2.6.2.2. Evaluation of Accuracy of Orthorectification for the Focus Area in the Second Study Area……………………………………..58 4.2.7. Mosaicking……………………...………………………………………………...60 4.2.8.Evaluation of Geometric Discrepancies in the Mosaicked Images……………….63 4.2.8.1. Evaluation of Geometric Discrepancies in the Mosaicked Images for the First Study Area…………………………………………………………..63 viii 4.2.8.1.1. Evaluation of Geometric Discrepancies in the Mosaicked Images for the Entire Area of the First Study Area…………………….63 4.2.8.1.2. Evaluation of Geometric Discrepancies in the Mosaicked Images for the Focus Area of the First Study Area……………………..68 4.2.8.2. Evaluation of Geometric Discrepancies in the Mosaicked Images for the Second Study Area………………………………………………………..72 4.2.8.2.1. Evaluation of Geometric Discrepancies in the Mosaicked Images for the Entire Area of the Second Study Area………………...72 4.2.8.2.2. Evaluation of Geometric Discrepancies in the Mosaicked Images for the Focus Area of the Second Study Area……………...…..79 4.2.9. Summary……………..............................................................................................82 CHAPTER 5. CONCLUSIONS……………………………………………………..….…..84 5.1. Conclusions………………………………………………………………………...……84 5.2.Limitations……………………………………………………………………...………..84 5.3. Future Works…………………………………………………………………………....84 BIBLIOGRAPHY...………………………………………………………………………….86

    Afek, Y., and Brand, A., 1998, Mosaicking of Orthorectified Aerial Images, Photogrammetry Engineering and Remote Sensing, Vol.64, No.2, pp.115-125.
    Bouillon, A., Bernard, M., Gigord, P., Orsoni, A., Rudowski, V., and Baudoin, A., 2006, SPOT 5 HSR Geometric Performances, ISPRS Journal of Photogrammetry & Remote Sensing., Vol.60, No.3, pp.134-146.
    Chen, L., C., and Lee, L., H., 1993, Rigorous Generation of Digital Orthophotos from SPOT Images, Photogrammetric Engineering and Remote Sensing, Vol.59, No.3, pp.655-661.
    Chen, L., C., Teo, T., A., and Rau, J., Y., 2005, Adaptive Patch Projection for The Generation of Orthophotos from Satellite Images, Photogrammetry Engineering and Remote Sensing, Vol.71, No.11, pp.1321-1327.
    Chen, L., C., Teo, T., A., and Liu, C., L., 2006, The Geometrical Comparisons of RSM and RFM for Formosat-2 Satellite Images, Photogrammetry Engineering and Remote Sensing, Vol.72, No.5, pp.573-579.
    Consortium for Spatial Information (CGIAR-CSI), 2004, Shuttle Radar Topographic Mission (SRTM), http://srtm.csi.cgiar.org/, (last date accessed: 12 April 2010).
    Cramer, M., Stallmann, D., and Haala, N., 2000, Direct Georeferencing Using GPS/Inertial Exterior Orientation for Photogrammetric Applications, International Archives of Photogrammetry and Remote Sensing, Vol.33 Part B3, pp.198-205.
    Communication and Information Service Agency of East Java Province, 2010, Profile of East Java Province, www.jatimprov.go.id, (last date accessed: 24 March 2010).
    Communication and Information Services Agency of D.I. Yogyakarta Province, 2010, Profile of D.I. Yogyakarta Province, www.pemda-diy.go.id, (last date accessed: 24 March 2010).
    Dowman, I.J., and Michalis, P., 2003, Generic Rigorous Model for Along Track stereo Satellite Sensors, Proceeding of the ISPRS Workshop on High Resolution Mapping from Space, 06-08 October, Hanover, unpaginated CD-ROM.
    Earth Remote Sensing Data Analysis Center (ERSDAC), 2009, ASTER GDEM, www.gdem.aster.ersdac.or.jp, (last date accessed: 12 April 2010).
    Fraser, C., S., and Hanley, H., B., 2003, Bias Compensation in Rational Function for IKONOS Satellite Imagery, Photogrammetric Engineering and Remote Sensing, Vol.69, No.1, pp.53-57.
    87
    Grodecki, J., and Dial, G., 2003, Block Adjustment of High-Resolution Satellite Image Described by Rational Function, Photogrammetry Engineering and Remote Sensing., Vol.69, No.1, pp.59-68.
    Habib, A., Shin, S., W., Kim, K., Kim, C., Bang, K., I., Kim, E., M., and Lee, D., C., 2007, Comprehensive Analysis of Sensor Modeling Alternatives for High Resolution Imaging Satellites, Photogrammetry Engineering and Remote Sensing, Vol.73, No.11. pp. 1241-1251.
    Indonesia National Coordinating Agency for Surveys and Mapping, 2003, Province Map, www.bakosurtanal.go.id.
    Jacobsen, K., 2008, Geometric Modeling of Linear CCDs and Panoramic Imagers, in Advances in Photogrammetry, Remote Sensing and Spatial Information Science: 2008 ISPRS Congress Book, Taylor & Francis, New York.
    Jensen, R., J., 1986, Introductory Digital Image Processing, Prentice-Hall, Englewood Cliffs, N.J., 379.
    Mayr, W., and Heipke, C., 1998, A Contribution to Digital Orthophoto Generation, The International Archives of Photogrammetry and Remote Sensing, Kyoto, Japan, Vol.27 Part B11, pp.IV430-IV439.
    Moik, and Johanness, G., 1980, Digital Processing of Remotely Sensed Images, NASA.
    O’Neill, M.A., and Dowman, I., J., 1988, The Generation of Epipolar Synthetic Stereo Mates for SPOT Images Using a DEM, Kyoto, Japan, Vol.27 Part B3, 587-598.
    Orun, A., B., and Natarajan, K., 1994, A Modified Bundle Adjustment software for SPOT Imagery and Photography:Tradeoff, Photogrammetric Engineering and Remote Sensing, Vol.60, No.12, pp.1431-1437.
    Robertson, B., C., 2003, Rigorous Geometric Modeling and Correction of Quickbird Imagery, Proceedings of the International Geo-science and Remote Sensing Symposium, 21-25 July, Toulouse, France, unpaginated CD-ROM.
    Shariat, M., Azizi, A., and Saadatseresht, M., 2008, Analysis and The Solution for Generating A True Digital Orthophoto in Close Range Photogrammtery, The International Archives of Photogrammetry, Remote Sensing, and Spatial Information Sciences, Vol.37, Part B4, pp.439-422
    Toutin, T., 2004, Geometric Processing of Remote Sensing Images: Model Algorithms and Methods, International Journal of Remote Sensing, Vol.25, No.10, 1893-1924.
    Teo, T., A., Chen, L., C., Liu, C., L., Tung, Y., C., and Wu, W., Y., 2010, DEM-Aided Block Adjustment for Satellite Images with Weak Convergence Geometry, IEEE
    88
    Transaction on Geoscience and Remote Sensing, Vol.48, Issue.4, pp.1907-1918.
    Wiesel, J., W., 1985, Digital Image Processing for Orthophoto Generation, Photogrammetria: International Society for Photogrammetry and Remote Sensing), Vol.40, No.2, pp. 69-76.
    Wolf, P., & Dewitt, B., 2000, Elements of Photogrammetry: with Applications in GIS, McGraw-Hill, New York.

    QR CODE
    :::