跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳宗興
Tsung-Hsing Chen
論文名稱: 物理信息神經網絡求解二維納維-斯托克斯流
Physics-Informed Neural Network Approach for Solving 2D Navier-Stokes Flows
指導教授: 胡偉帆
Wei-Fan Hu
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系
Department of Mathematics
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 31
中文關鍵詞: 物理信息神經網絡納維-斯托克斯流泰勒-格林渦旋
外文關鍵詞: Physics-Informed Neural Network, Navier-Stokes Flows, Taylor-Green vortex
相關次數: 點閱:18下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,我們提出了一種修改的投影方法,利用物理信息神經網絡來求解不可壓縮的納維-斯托克斯方程。我們首先應用有限差分法結合投影方法來解決泰勒-格林渦旋,並將結果與解析解進行比較。我們的結果表明,該方法能夠以二階收斂速率準確預測泰勒-格林渦旋的流動和壓力場。隨後,我們使用結合投影方法的物理信息神經網絡來解決泰勒-格林渦旋。然而,我們的實驗結果表明,直接使用投影法會導致速度場的預測結果較差。為了解決這個問題,我們提出了一種修改的投影方法,同時求解流體函數和勢函數,並通過流體函數來更新速度場。我們的數值結果表明,這種方法能夠在方形、橢圓形和L形區域中準確預測泰勒-格林渦旋的流動和壓力場。


    In this thesis, we propose a modified projection method for solving the incompressible Navier-Stokes equations using physics-informed neural networks (PINNs). We begin by applying the finite difference method combined with the projection method to solve the Taylor- Green vortex and compare the results with the analytical solution. Our results demonstrate that this approach accurately predicts the flow and pressure fields of the Taylor-Green vortex with a second-order convergence rate. We then use PINNs with the projection method to solve the Taylor-Green vortex. However, our experimental results indicate that, direct usage of the projection method leads to poor prediction results of the velocity field. To address this, we propose a modified projection method that simultaneously solves the stream function and potential function. Our numerical results show that this approach accurately predicts the flow and pressure fields of the Taylor-Green vortex in square, ellptical and L-shaped domains.

    中文摘要 - i 英文摘要 - ii Table of Contents - iii List of Figures - iv List of Tables - v Chapter 1 Introduction - 1 Chapter 2 Research Context and Methods - 3 2.1 Navier-Stokes Equations - 3 2.2 Projection Method - 4 2.3 Modified Projection Method - 5 Chapter 3 Physics-Informed Neural Networks - 7 Chapter 4 Numerical Simulations - 11 4.1 The Results of the Projection Method and the Modified Projection Method - 12 4.2 Modified Projection Method Results - 14 4.2.1 Numerical Results: Square Domain - 14 4.2.2 Numerical Results: Elliptical Domain - 16 4.2.3 Numerical Results: L-shaped Domain - 18 Chapter 5 Conclusions - 20 Bibliography - 21

    [1] A. J. Chorin, “Numerical solution of the navier-stokes equations,” Mathematics of computation, vol. 22, no. 104, pp. 745–762, 1968.
    [2] V. Girault and P.-A. Raviart, Finite element methods for Navier-Stokes equations: theory and algorithms. Springer Science & Business Media, 2012, vol. 5.
    [3] J. Marshall, A. Adcroft, C. Hill, L. Perelman, and C. Heisey, “A finite-volume, incompressible navier stokes model for studies of the ocean on parallel computers,” Journal of Geophysical Research: Oceans, vol. 102, no. C3, pp. 5753–5766, 1997.
    [4] D. L. Brown, R. Cortez, and M. L. Minion, “Accurate projection methods for the incompressible navier-stokes equations,” Journal of Computational Physics, vol. 168, no. 2, pp. 464–499, 2001.
    [5] X. Jin, S. Cai, H. Li, and G. E. Karniadakis, “Nsfnets (navier-stokes flow nets): Physicsinformed neural networks for the incompressible navier-stokes equations,” Journal of Computational Physics, vol. 426, p. 109 951, Feb. 2021.
    [6] S. Cai, Z. Mao, Z. Wang, M. Yin, and G. E. Karniadakis, “Physics-informed neural networks (pinns) for fluid mechanics: A review,” Acta Mechanica Sinica, vol. 37, no. 12, pp. 1727–1738, 2021.
    [7] S. Cuomo, V. S. Di Cola, F. Giampaolo, G. Rozza, M. Raissi, and F. Piccialli, “Scientific machine learning through physics–informed neural networks: Where we are and what's next,” Journal of Scientific Computing, vol. 92, no. 3, p. 88, 2022.
    [8] M. Raissi, P. Perdikaris, and G. Karniadakis, “Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations,” Journal of Computational Physics, vol. 378, pp. 686–707, 2019.
    [9] Y.-H. Tseng, “The simulation of incompressible flow around a solid body by volume-offluid approach,” M.S. thesis, National Chiao Tung University, 2005.
    [10] S. Wang, S. Sankaran, H. Wang, and P. Perdikaris, An expert’s guide to training physicsinformed neural networks, 2023. arXiv: 2308.08468 [cs.LG].
    [11] D. W. Marquardt, “An algorithm for least-squares estimation of nonlinear parameters,” Journal of the Society for Industrial and Applied Mathematics, vol. 11, no. 2, pp. 431–441, 1963.

    QR CODE
    :::