| 研究生: |
洪祥恩 Hsiang-ann Hong |
|---|---|
| 論文名稱: |
類神經網路之乳房腫瘤診斷技術研究 Breast Tumor Diagnosis Using Artificial Neural Network Techniques |
| 指導教授: |
潘敏俊
Min-Chun Pan |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生醫理工學院 - 生物醫學工程研究所 Graduate Institute of Biomedical Engineering |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 51 |
| 中文關鍵詞: | 腫瘤 、類神經網路 、近紅外光斷層掃描 |
| 外文關鍵詞: | tumor, artificial neural network, near infrared diffuse optical tomography |
| 相關次數: | 點閱:13 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文以類神經網路發展腫瘤診斷之技術,期望能縮短系統檢測腫瘤之時間與判斷是否有腫瘤及其型態(如大小、位置與光學係數等)。類神經網路建立是以有限元素法前向運算,模擬單一近紅外光光源入射乳房,經組織散射與吸收後,於乳房周緣將呈現之光強度分布,令無腫瘤與有腫瘤之周緣光強度曲線相減,進而從光強度差異曲線中選取相關特徵值(AD, AW1, AW2, α),再經正規化後作為類神經網路輸入神經元的輸入值;而其相對應之腫瘤型態(contrast, radius, distance, radiation angle),亦經正規化後作為輸出神經元的輸出值,藉此訓練階段建立類神經網路神經元間的權重值。最後,由實驗、模擬及人體量測狀況模擬三種數據,測試類神經網路診斷方法,並顯示以下結果:(1)本方法對於腫瘤大小及方位診斷之準確度高,而對於腫瘤光學係數診斷之準確度,相對於大小及方位較低,但腫瘤大小及方位足以作為腫瘤診斷之基準,故本方法具可靠性,並可應用此估測做為腫瘤斷面成像之初始值;(2)藉此測試亦顯示腫瘤參數contrast、radius對於特徵值AD及AW1具有特性相近效應,使得類神經網路輸入參數及輸出參數之間呈現一對多關係,此關係將作為後續課題之研究;(3)針對人體量測可能遇到之狀況做模擬,顯示儀器光源強度不同無造成診斷誤差,因此可忽略此變因;而背景光學係數改變及加入乳腺因子會造成診斷誤差,故如何降低誤差為後續必須考量之課題。
This thesis presents an artificial neural network (ANN) technique for breast tumor diagnosis expected to shorten measurement time and discriminate tumor categories. The method is design with four inputs (AD, AW1, AW2, α) passing through the artificial neural network (ANN) to obtain the tumor categories (contrast, radius, distance, radiation angle). The inputs represent the characteristics from the difference between the measured intensities of the inhomogeneous and the homogeneous phantom, and then the ANN is training by simulation data, which is simulated by finite element forward method. Finally testing our method by simulation and experiment data, then we have three concluded points: (1) Tumor location and radius can be estimated more precisely than tumor contrast. Though tumor contrast is estimated false, using tumor location and radius to diagnosis breast tumor is enough. Because of above we can promise our ANN diagnosis method, and then the method also can be expected to be the initial guess for the inverse solution in the numerical simulation. (2) Contrast and radius have similar relation for AD and AW1, and the relation is possible to cause cross-talk for contrast and radius. This remains under investigation. (3) Changing source intensity can not cause diagnosis error, but changing optical properties of background and adding mammary gland model can cause error. Therefore, how to reduce diagnosis error for above factors is an important problem.
[1]Breastcancer.org (http://www.breastcancer.org/).
[2]Cutler, M., “Transillumination as an aid in the diagnosis of breast lesions,” Surg. Gyn. Obst, Vol. 48, pp. 721-729 (1929).
[3]Choe, R., “DIFFUSE OPTICAL TOMOGRAPHY AND SPECTROSCOPY OF BREAST CANCER AND FETAL BRAIN,” Ph.D thesis, University of Pennsylvania(2005).
[4]Ghosh, N., Mohanty, S. K., Majumder, S. K., Gupta, P. K., “Measurement of optical transport properties of normal and malignant human breast tissue,” Applied Optics, Vol. 40, No. 1, pp. 176-184 (2001).
[5]Hebden, J. C, Arridge, S. R, Delpy, D. T, “Optical imaging in medicine: I. Experimental techniques,” Phys. Med. Biol., Vol. 42, pp. 825–840 (1997).
[6]Hart, B. L., Steinbock, R. T., Mettler, F. A., Pathak, D. R., Bartlow, S. A., “Age and race changes in mammographic parenchymal patterns,” Cancer, Vol. 63, pp. 2537-2539 (1989).
[7]Ntziachristos, V., “Concurrent diffuse optical tomography, spectroscopy and magnetic resonance image of breast cancer,” Ph.D thesis, University of Pennsylvania(2000).
[8]Nooralahiyan, A. Y., Hoyle, B. S., “Three-component tomographic flow imaging using artificial neural network reconstruction,” Chemical Engineering Science, Vol. 52, No. 13, pp. 2139-2148(1997).
[9]Profio, A. E., Navarro, G.. A., “Scientific basis of breast diaphanography,” Med. Phys., Vol. 16, pp. 60-65 (1989).
[10]Paulsen, K. D., Jiang, H., “Spatially varying optical property reconstruction using a finite element diffusion equation approximation,” Med. Phys., Vol. 22, pp. 691-701 (1995).
[11]Pogue, B. W., Testorf, M., McBridge, T., Osterberg, U., Paulsen, K., “Instrumentation and design of a frequency-domain diffuse optical tomography imager for breast cancer detection,” OPTICS EXPRESS, Vol. 1, No. 13, pp. 391-403(1997).
[12]Tabar, L., Yen, M. F., Vitak, B., Chen, H.-H. T., Smith, R. A, Duffy, S. W, “ Mammography service screening and mortality in breast cancer patients: 20-year follow-up before and after introduction of screening,” THE LANCET , Vol. 361, pp. 1405-1410 (2003).
[13]Troy, T. L., Page D. L., Sevick-Muraca, E. M., “Optical properties of normal and diseased breast tissues:prognosis for optical mammography ,” Journal of Biomedical Optics, Vol. 1, No. 3, pp. 342-355 (1996).
[14]Tromberg, B. J., Coquoz, O., Fishkin, J. B., Pham, T., Anderson, E. R., Butler, J., Cahn, M., Gross, J. D., Venugopalan, V., Pham, D., “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Phil. Trans. R. Soc. Lond. B, Vol. 352, pp. 661-668 (1997).
[15]Woodard, H. Q., White, D. R., “The composition of body tissues,” Br. J. Radiol., Vol. 59, pp. 1209-1219 (1986).
[16]White, D. R., Woodard, H. Q., Hammond, S. M., “Average soft-tissue and bone models for ues in radiation dosimetry,” Br. J. Radiol., Vol. 60, pp. 907-913 (1987).
[17]Wang, L. V., Wu, Hsin-i, Biomedical optics:principle and imaging, John Wiley & Sons, Ins., New Jersey (2007).
[18]Xu, C., Yuan, B., Zhu, Q., “Optimal probe design for breast imaging using near-infrared diffused light,” Journal of Biomedical Optics, Vol. 13, pp. 044022_1-044022_10(2008).
[19]Yang, S.-C., Wang, C.-M., Chung, Y.-N., Hsu, G.-C., Lee, S.-K., Chung, P.-C., Chang, C.-I, “A computer-aided system for mass detection and classification in digitized mammograms,” Biomedical Engineering Applications, Basis & Communications, Vol.17, No. 5, pp. 215-227(2005).
[20]Zhang, Q., Jiang, H., “Three-dimensional diffuse optical imaging of hand joints : System description and phantom studies,” Optics and Lasers in Engineering, Vol. 43, pp. 1237-1251(2005).
[21]施易利,「醫用近紅外光光電量測機構對模擬乳房與腫瘤之假體量測分析」,碩士論文,國立中央大學機械工程研究所,中壢(2006)。
[22]陳建宏,「醫用近紅外光光電量測系統之設計與驗証」,碩士論文,國立中央大學機械工程研究所,中壢(2005)。
[23]張斐章,張麗秋,類神經網路,臺灣東華書局股份有限公司出版,臺北 (2005)。
[24]楊玉齡譯,露骨:醫學造影檔案,天下遠見出版,臺北 (2000)。
[25]癌症登記工作小組諮詢委員會委員,中華民國95年癌症登記報告,行政院衛生署國民健康局編印,臺灣 (2009)。
[26]羅華強,類神經網路:MATLAB的應用,高立圖書有限公司出版,臺北 (2008)。