| 研究生: |
唐安迪 An-Ti Tang |
|---|---|
| 論文名稱: |
基於純量繞射理論以遠場聲場重建光聲影像之研究 The Study of Reconstruction of Photoacoustic Image by Far-Field Acoustic Field Based on Scalar Diffraction Theory |
| 指導教授: |
鍾德元
Te-yuan Chung |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 80 |
| 中文關鍵詞: | 光聲影像 、純量繞射理論 |
| 外文關鍵詞: | Photoacoustic image, Scalar diffraction theory |
| 相關次數: | 點閱:10 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
一般的光聲影像,都是藉由直接將偵測到的光聲訊號的時間和振幅資訊進行空間上的排列進而還原影像,所得到的光聲影像只有振幅對應於空間上的分布。而本篇研究基於量繞射理論所重建的光聲影像同時包含了振幅和相位的資訊。相位的分布隱含著光聲波於空間中傳遞的方向,換句話說,重建的光聲影像同時呈現了光聲波的大小和傳遞的方向。
藉由本研究提出的掃描經由拋物面鏡反射後的光聲場和純量繞射理論為基礎的計算,分別可重建出點聲源、線聲源和雙點聲源的光聲影像。並且利用傳播的概念,重建出三維的光聲影像。
Conventionally, a photoacoustic(PA) image is obtained by directly arranging both of the information of time and amplitude of PA signals for each position in the space. Therefore, only the distribution of the amplitude of the PA field can be reconstructed. However, not only the distribution of the amplitude but the distribution of the phase can be rebuilt based on the scalar diffraction theory in this research. The distribution of the phase reveals the direction of propagation of the PA field. Consequently, in this work, the PA image contains both of the amplitude of the PA field and the direction of propagation of the wavefront of the PA field.
The PA images of a single point, a line and a double-point can be restored by scanning the PA field reflected by a parabolic reflector and calulating by the scalar diffraction theory. In addition, the 3D image of the PA field was also achieved by using the same concept.
1. L. M. Lyamshev, "Optoacoustic sources of sound," SOV PHYS USPEKHI 24, 977–995 (1981).
2. S. M. Park, M. I. Khan, H. Z. Cheng, and G. J. Diebold, "Photoacoustic effect in strongly absorbing fluids," Ultrasonics 29, 63-67 (1991).
3. M. I. Khan, T. Sun, and G. J. Diebold, "Photoacoustic waves generated by absorption of laser radiation in optically thin layers," The Journal of the Acoustical Society of America 93, 1417-1425 (1993).
4. D. Hutchins, and A. C. Tam, "Pulsed Photoacoustic Materials Characterization," IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 33, 429-449 (1986).
5. C. K. N. Patel, and A. C. Tam, "Pulsed optoacoustic spectroscopy of condensed matter," Reviews of Modern Physics 53, 517-550 (1981).
6. P. Sathy, R. Philip, V. P. N. Nampoori, and C. P. G. Vallabhan, "Observation of two-photon absorption in rhodamine 6G using photoacoustic technique," Optics Communications 74, 313-317 (1990).
7. P. Sathy, R. Philip, V. P. N. Nampoori, and C. P. G. Vallabhan, "Photoacoustic observation of excited singlet state absorption in the laser dye rhodamine 6G," Journal of Physics D: Applied Physics 27, 2019 (1994).
8. H. A. MacKenzie, H. S. Ashton, S. Spiers, Y. Shen, S. S. Freeborn, J. Hannigan, J. Lindberg, and P. Rae, "Advances in Photoacoustic Noninvasive Glucose Testing," Clinical Chemistry 45, 1587-1595 (1999).
9. C. G. A. Hoelen, F. F. M. de Mul, R. Pongers, and A. Dekker, "Three-dimensional photoacoustic imaging of blood vessels in tissue," Optics letters 23, 648-650 (1998).
10. G. Ku, and L. V. Wang, "Scanning microwave-induced thermoacoustic tomography: Signal, resolution, and contrast," Medical Physics 28, 4-10 (2001).
11. Z. Xie, S. Jiao, H. F. Zhang, and C. A. Puliafito, "Laser-scanning optical-resolution photoacoustic microscopy," Optics letters 34, 1771-1773 (2009).
12. K. Maslov, H. F. Zhang, S. Hu, and L. V. Wang, "Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries," Optics letters 33, 929-931 (2008).
13. F. Kong, Y. C. Chen, H. O. Lloyd, R. H. Silverman, H. H. Kim, J. M. Cannata, and K. K. Shung, "High-resolution photoacoustic imaging with focused laser and ultrasonic beams," Applied Physics Letters 94, 033902 (2009).
14. H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, "Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging," Nat Biotech 24, 848-851 (2006).
15. J. J. Niederhauser, M. Jaeger, R. Lemor, P. Weber, and M. Frenz, "Combined ultrasound and optoacoustic system for real-time high-contrast vascular imaging in vivo," IEEE Transactions on Medical Imaging 24, 436-440 (2005).
16. M. Xu, G. Ku, and L. V. Wang, "Microwave-induced thermoacoustic tomography using multi-sector scanning," Medical Physics 28, 1958-1963 (2001).
17. X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, "Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain," Nat Biotech 21, 803-806 (2003).
18. A. G. Bell, "On the production and reproduction of sound by light," Am. J. Sci. 20, 305-324 (1880).
19. A. C. Tam, "Applications of photoacoustic sensing techniques," Reviews of Modern Physics 58, 381-431 (1986).
20. P. M. Morse, and K. U. Ingard, "Theoretical acoustics."
21. J. W. Goodman, Introduction to Fourier optics (McGraw-Hill, 1968).
22. M. Nazarathy, and J. Shamir, "Fourier optics described by operator algebra," Journal of the Optical Society of America 70, 150-159 (1980).
23. G. M. Hieftje, "Signal-to-noise enhancement through instrumental techniques. II. Signal averaging, boxcar integration, and correlation techniques," Analytical Chemistry 44, 69A-78a (1972).