| 研究生: |
馬英傑 Ma-Ying Chieh |
|---|---|
| 論文名稱: |
扶手椅狀石墨烯奈米帶功率因子之提升 Enhancement of power factor in Armchair Graphene Nanoribbons |
| 指導教授: |
郭明庭
Kuo-Ming Ting |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 40 |
| 中文關鍵詞: | 石墨烯 、功率因子 |
| 相關次數: | 點閱:27 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本篇論文中,我們利用緊束缚模型以及格林函數,從理論上研究了扶手椅狀石墨烯奈米帶(AGNRs)異質結構的熱電效應,我們將氮化硼奈米帶(BNNRs)和扶手椅型石墨烯奈米帶(AGNRs) 組合成異質結構,使其耦合來改變能帶的結構進而產生陣列特性。而我們發現,15AGNR - 5BNNR的功率因子可以超過一維理想系統的功率因子的量子限制,這是由於在第一子帶能級的簡併所致,利用此優勢,我們進而可以優化石墨烯奈米帶(GNRs)元件的功率輸出。
In this thesis, we theoretically investigate the thermoelectric effect of armchair graphene nanoribbons (AGNRs) heterostructure using Green’s function and tight-binding model. To this end, BNNRs and AGNRs were combined to form a heterostructure, inducing coupling that modifies the band structure and gives rise to array characteristics. The power factor of 15AGNR - 5BNNR structure can exceed the quantum limit of the power factor in an ideal one-dimensional system. This enhancement is attributed to the degeneracy at the first subbands energy level. Leveraging this advantage, we can further optimize the power output of graphene nanoribbon (GNR) devices.
參考文獻
[1] K. Nakada, M. Fujita, G. Dresselhaus and M. S. Dresselhaus, Edge state in graphene ribbons: Nanometer size effect and edge shape dependence, Phys. Rev. B 54, 17954 (1996).
[2] Son, Young-Woo and Cohen, Marvin L. and Louie, Steven G., Energy Gaps in Graphene Nanoribbons, Phys. Rev. Lett. 97, 216803 (2006).
[3] Geim, A. K. & Novoselov, K. S. The rise of graphene. Nature Mater. 6, 183–191 (2007).
[4] B. Obradovic, R. Kotlyar, F. Heinz, P. Matagne, T. Rakshit, M. D. Giles, M. A. Stettler, D. E. Nikonov, Analysis of graphene nanoribbons as a channel material for field-effect transistors, Appl. Phys. Lett. 88, 142102 (2006).
[5] Brey, L. and Fertig, H. A., Electronic states of graphene nanoribbons studied with the Dirac equation, Phys. Rev. B 73, 235411 (2006).
[6] K. Yang, Y. P. Chen, R. D'Gosta, Y. Xie, J. X. Zhong and A. Rubio, Enhanced thermoelectric properties in hybrid graphene/boron nitride nanoribbons, Phys. Rev. B 86, 045425 (2012).
[7] Giovannetti, Gianluca and Khomyakov, Petr A. and Brocks, Geert and Kelly, Paul J. and van den Brink, Jeroen, Substrate-induced band gap in graphene on hexagonal boron nitride: Ab initio density functional calculations, Phys. Rev. B 76, 073103 (2007).
[8] R.C. Sahni, Electronic states of molecules. I. Electronic structure of BH
, J. Chem. Phys. 25, 332-336 (1956).
[9] J.C. Slater, Molecular energy levels and valence bands, Phys. Rev. 33, 1109-1144 (1931).
[10] Y. Ding and Y. Wang, J. Ni, Electronic properties of graphene nanoribbons embedded in boron nitride sheets, Appl. Phys. Lett. 95, 123105 (2009).
[11] H. Haug and A. P. Jauho. Quantum kinetics in transport and optics of semiconductors. Springer, Heidelberg. (1996).
[12] G. S. Seal and J. Guo, Bandgap opening in boron nitride confined armchair graphene nanoribbon, Appl. Phys. Lett. 98, 143107 (2011).
[13] Y. G. Gurevich and G. N. Logvinov. Physics of thermoelectric cooling. Semicond. Sci. Technol. 20, R57 (2005).
[14] E. Velmre, Thomas Johann Seebeck and his contribution to the modern science and technology, IEEE, 2010 12th Biennial Baltic, Tallinn Electronics Conference, Tallinn, Estonia, (2010).
[15] Akram I. Boukai1, Yuri Bunimovich1, Jamil Tahir-Kheli1, Jen-Kan Yu1, William A. Goddard III1 & James R. Heath1, Silicon nanowires as efficient thermoelectric materials, Nature vol. 451, 7175 (2008).
[16] R. Venkatasubramanian, E. T. Colpitts and B. O'Quinn. Thin-film thermoelectric devices with high room-temperature figures of merit. Nature 413, 597 (2001).
[17] David M. T. Kuo and Y. C. Chang, Contact effects on thermoelectric properties of textured graphene nanoribbons, Nanomaterials 12, 3357 (2022).
[18] Y. Matsuda, W. Q. Deng and W. A. Goddard III, Contact Resistance for ”End-Contacted” Metal-Graphene and Metal-Nanotube Interfaces from Quantum Mechanics, J. Phys. Chem. C 114 , 17845 (2010).
[19] D. Gunlycke, H.M. Lawler, C.T. White, Room-temperature ballistic transport in narrow graphene strips, Phys. Rev. B 75, 085418 (2007).
[20] D. A. Areshkin, D. Gunlycke and C. T. White, Ballistic transport in graphene nanostrips in the presence of disorder: Importance of edge effects, Nano Lett. 7, 204 (2007).
[21] David M. T. Kuo, Temperature-stable tunneling current in serial double quantum dots: insights from nonequilibrium green functions and Pauli spin blockade, Phys. Chem. Chem. Phys. 27, 5238-5248 (2025).
[22] R. S. Whitney, Most Efficient Quantum Thermoelectric at Finite Power Output, Phys. Rev. Lett. 112, 130601 (2014).
[23] V. T. Tran, J. S. Martin and P. Dollfus, High thermoelectric performance in graphene/BN interface engineering, Nanotechnology 26, 495202 (2015).
[24] Z. Liu, L. L. Ma, G. Shi, W. Zhou, Y. J. Gong, S. D. Lei, X. B. Yang, J. N. Zhang, J. J. Yu, K. P. Hackenberg, A. Babakhani, J. C. Idrobo, R. Vajtai, J. Lou and P. M. Ajayan, In-plane heterostructures of graphene and hexagonal boron nitride with controlled domain sizes, Nat. Nanotechnol. 8, 119 (2013).