跳到主要內容

簡易檢索 / 詳目顯示

研究生: 高仕麒
Shih-Chi Kao
論文名稱: 建造準相位匹配高階諧波產生的拍波脈衝串
Construction of a Beat‐Wave Pulse Train for Quasi‐Phase‐Matched High‐Harmonic Generation
指導教授: 朱旭新
Hsu-hsin Chu
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 45
中文關鍵詞: 同調軟 X 射線激光高階諧波雙色激光系統脈衝串
外文關鍵詞: soft x-ray laser, two-color laser amplifier system, pulse train
相關次數: 點閱:5下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 對於產生同調軟 X 射線激光在水窗區域,我們計劃聚焦主要激光在高原子數離子的介
    質,產生高階諧波。高階諧波產生的效率被主要激光和高階諧波的相位不批配限制。在反相
    位的高階諧波區域的電場和正相位的高階諧波的區域的電場會相消干涉,使高階諧波產生的
    效率強度不能建設性增加。然而,強度相對較弱的(1/100)反方向對撞激光可以破壞高階
    諧波產生在反相位的範圍。因此,我們建立雙色的激光放大系統,構建一個可控脈衝間隔時
    間 的拍波脈衝序列,以對應準相位匹配條件使高階諧波可以建設性增加產生。
    雙色激光放大系統是 100-TW 激光系統的分支。它的中心波長為 800 nm。首先,它被
    是聚焦於充滿氪氣的長管中產生超連續光譜的產生。由於自相位調製,它可擴展頻譜到 900
    nm。在那之後,我們送它進聲光調變器過濾為兩個尖峰的光譜。隨後,它進入到脈衝延展器
    的時間把時間延展從 50 fs 到 50 ps。最後,它通過第一級放大器和第二級放大器來放大
    能量。在脈衝壓縮器中,我們可以壓縮成短的脈衝時間和調整屋頂鏡延遲線在脈衝壓縮器中,
    使雙色波的時間重疊間並形成拍波序列脈衝串。
    在那之後,我們要實驗這雙色激光系統可以構建我們想要的脈衝串。在這裡,我們用
    20-TW 激光作為探針波與拍波在 BBO 上交叉產生和頻(SFG)。我們可以調整探測波延遲線來
    做互相關實驗。
    最後,在 600 fs 的脈衝串可以觀察到近 10 個清晰的脈衝。該脈衝間隔時間恰好對應
    高階諧波準相位匹配條件。


    For generating coherent soft x-ray laser in the water window region, we plan to
    focus driving laser on the high-Z ions as interacting medium to generate high-
    harmonic generation. The efficiency of high-harmonic generation is limited by the
    phase-mismatch of driving laser and high-harmonic generation. The out-of phase
    high-harmonic generation field and in phase high-harmonic generation field cause
    destructive interference so that the efficiency of high-harmonic generation intensity
    can not constructively increase.
    However, a relatively weak intensity (1/100) counter-propagating laser can disrupt
    the high-harmonic generation emission from the out-of phase range. Therefore, we
    build the two-color laser amplifier system to construct a beat-wave pulse train with
    controllable pulse separation time to fit quasi-phase-matching condition of high-
    harmonic generation.
    The seed laser of the two-color laser amplifier system is from the 100-TW laser
    system branch. The center wavelength is 800 nm. First, it is focused on a long tube
    full of Kr gas to generate supercontinuum generation. The spectrum can be extended
    to 900 nm due to self-phase modulation. After that, we send it into Dazzler to filter
    the spectrum into two peaks. Then, it goes to stretcher to stretch the duration from
    50 fs to 50 ps. After all, it gains energy through first-stage amplifier & second-
    stage amplifier. In the compressor, we can compensate the dispersion of chirp pulse
    to compress it into short pulse duration and adjust roof mirror delay line in the
    compressor to make two color waves temporal overlap and form beat-wave pulse
    train.
    After that, we want to examine that this two-color laser system can construct the
    pulse train we want. Here, we use 20-TW beam line as a probe wave to cross
    with beat-wave on BBO crystal generating sum-frequency generation (SFG). We
    can adjust the delay line of probe wave to do the cross-correlation experiment.
    Finally, these are nearly 10 clear pulses being obtained in a 600-fs pulse train. The
    separation time of pulses just fit quasi-phase-matching condition of high-harmonic
    generation.

    Contents 1 Introduction and Motivation 1 1.1 Introduction of High-Harmonic Generation . . . . . . . . . . . . . . . 1 1.2 HHG Phase-Mismatching Problem . . . . . . . . . . . . . . . . . . . 3 1.3 Quasi-Phase-Matching Method (QPM) . . . . . . . . . . . . . . . . . 5 1.3.1 Selective-Zoning Quasi-Phase-Matching Method . . . . . . . . 6 1.3.2 Beat-Wave Pulse Train for QPM . . . . . . . . . . . . . . . . 8 2 Two-Color Laser Amplifier System 11 2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2 Two-Color Laser Amplifier System Layout . . . . . . . . . . . . . . . 11 2.3 Supercontinuum Generation . . . . . . . . . . . . . . . . . . . . . . . 12 2.3.1 Self-Phase Modulation (SPM) . . . . . . . . . . . . . . . . . . 13 2.3.2 Simulation of SPM . . . . . . . . . . . . . . . . . . . . . . . . 15 2.3.3 The Stability of WLG & Supercontinuum Generation . . . . . 17 2.3.4 Acousto-optic Programmable Dispersive Filter (Dazzler) . . . 21 2.4 First-Stage Amplifier & Second-Stage Amplifier . . . . . . . . . . . . 22 2.5 Compressor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3 Characterization of the Beat-Wave Pulse Train 29 3.1 Experiment Setup & Layout . . . . . . . . . . . . . . . . . . . . . . . 29 3.2 Experiment Flowing Chart . . . . . . . . . . . . . . . . . . . . . . . . 30 3.3 Beat-Wave Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.4 Conclusion and Prospect . . . . . . . . . . . . . . . . . . . . . . . . 40 Bibliography 43

    [1] Thomas Brabec and Ferenc Krausz. Intense few-cycle laser fields: Frontiers of
    nonlinear optics. 72(2):545–591, April 2000.
    [2] Ph. Zeitoun, G. Faivre, S. Sebban, T. Mocek, A. Hallou, M. Fajardo, D. Aubert,
    Ph. Balcou, F. Burgy, D. Douillet, S. Kazamias, G. de Lacheze-Murel,
    T. Lefrou, S. le Pape, P. Mercere, H. Merdji, A. S. Morlens, J. P. Rousseau,
    and C. Valentin. A high-intensity highly coherent soft x-ray femtosecond laser
    seeded by a high harmonic beam. Nature, 431(7007):426–429, September 2004.
    [3] M. Lewenstein, Ph. Balcou, M. Yu. Ivanov, Anne L’Huillier, and P. B. Corkum.
    Theory of high-harmonic generation by low-frequency laser fields. 49(3):2117–
    2132, March 1994.
    [4] P. B. Corkum. Plasma perspective on strong field multiphoton ionization.
    71(13):1994–1997, September 1993.
    [5] Robert W. Boyd. Nonlinear Optics, Third Edition. Academic Press, 3 edition,
    April 2008. Published: Hardcover.
    [6] S. Augst, D. Strickland, D. D. Meyerhofer, S. L. Chin, and J. H. Eberly. Tun-
    neling ionization of noble gases in a high-intensity laser field. Phys. Rev. Lett.,
    63:2212–2215, Nov 1989.
    [7] Krishnan R. Parameswaran, Jonathan R. Kurz, Rostislav V. Roussev, and Mar-
    tin M. Fejer. Observation of 99% pump depletion in single-pass second-harmonic
    generation in a periodically poled lithium niobate waveguide. 27(1):43–45, Jan-
    uary 2002.
    [8] A. Paul, R. A. Bartels, R. Tobey, H. Green, S. Weiman, I. P. Christov, M. M.
    Murnane, H. C. Kapteyn, and S. Backus. Quasi-phase-matched generation of
    coherent extreme-ultraviolet light. Nature, 421(6918):51–54, January 2003.
    [9] Justin Peatross, Sergei Voronov, and I. Prokopovich. Selective zoning of high
    harmonic emission using counter-propagating light. 1(5):114–125, September
    1997.
    [10] S. L. Voronov, I. Kohl, J. B. Madsen, J. Simmons, N. Terry, J. Titensor,
    Q. Wang, and J. Peatross. Control of laser high-harmonic generation with
    counterpropagating light. 87(13):133902, September 2001.
    [11] Xiaoshi Zhang, Amy L. Lytle, Tenio Popmintchev, Xibin Zhou, Henry C.
    Kapteyn, Margaret M. Murnane, and Oren Cohen. Quasi-phase-matching and
    45
    and Its Application in Laser-Cluster Interaction and X-Ray Lasers. PhD thesis,
    NTU, Taipei, Taiwan, 2005.
    [13] Jarman Courtney, Douglass Schumacher, and Camelia Modoran. Supercon-
    tinuum generation in sapphire: A measurement of intensity. (REU Summer
    Program), 2005.
    [14] Hajime Nishioka, Wataru Odajima, Ken-ichi Ueda, and Hiroshi Takuma. Ultra-
    broadband flat continuum generation in multichannel propagation of terrawatt
    ti:sapphire laser pulses. 20(24):2505–2507, December 1995.
    [15] M. Nisoli, S. De Silvestri, and O. Svelto. Generation of high energy 10 fs pulses
    by a new pulse compression technique. 68(20):2793–2795, 1996.
    [16] Tai-Wei Yau, Chau-Hwang Lee, and Jyhpyng Wang. Femtosecond self-
    focusing dynamics measured by three-dimensional phase-retrieval cross corre-
    lation. 17(9):1625–1635, September 2000.
    [17] S. Sreeja, S. Venugopal Rao, P. Radhakrishnan, Surya P. Tewari, and
    P. Prem Kiran. Supercontinuum emission from water using fs pulses in the
    external tight focusing limit. pages 824718–824718–6, 2012.
    [18] F. A. Ilkov, L. Sh Ilkova, and S. L. Chin. Supercontinuum generation versus
    optical breakdown in CO2 gas. 18(9):681–683, May 1993.

    QR CODE
    :::