跳到主要內容

簡易檢索 / 詳目顯示

研究生: 李惇儒
Dun-Ru Li
論文名稱: 白光LED之封裝效率之研究
The study of package efficiency for white LEDs
指導教授: 孫慶成
Ching-Cherng Sun
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
畢業學年度: 99
語文別: 中文
論文頁數: 96
中文關鍵詞: 螢光粉封裝效率白光LED
外文關鍵詞: phosphor, white LED, package efficiency
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文中,我們將研究不同白光LED封裝型式其封裝效率之差異,利用已建構之YAG螢光粉模型在相同色溫下,分析六種封裝型式在封裝效率上的差異,並討論其封裝效率差異的原因,再探討改變基板反射率與晶片吸收等參數對封裝效率的變化。
    接著以實際封裝驗證六種封裝之效率,首先量測得到基板反射率,接著實際進行六種封裝方式,最後分析比較六種封裝其實驗及模擬的差異。


    In this thesis, we study the package loss for six white LED package types. Based on the YAG phosphor model, we build up six white LED package types in our simulation. Under the same CCT, we calculate package loss between six different packages and analyze the effect of the different LED package types. We also discuss the influence of the package loss by changing the reflectivity of the substrate and the absorption coefficient of the die.
    In order to verify the simulation data, we try to do the experiments for investigation of the package loss of the six LED package types. First, We measure the reflectivity of substrate, then we do the six geometry of LEDs package. Finally, we compare with simulation and experimental data and analyze the difference between simulation and experiment.

    目錄 摘要 ........................................................................................................................ i Abstract ................................................................................................................. ii 致謝 ...................................................................................................................... iii 目錄 ....................................................................................................................... v 圖目錄 ................................................................................................................ viii 表目錄 ................................................................................................................ xiii 第一章 緒論 ...................................................................................................... 1 1.1 LED 背景 ............................................................................................. 1 1.2 研究動機與目的 .................................................................................. 3 1.3 論文大綱 .............................................................................................. 5 第二章 基本原理 .............................................................................................. 7 2.1 引言 ...................................................................................................... 7 2.2 LED 發光原理 ..................................................................................... 7 2.3 螢光粉原理 .......................................................................................... 8 vi 2.4 封裝技術 ............................................................................................ 11 第三章 不同封裝型式之封裝效率分析 ........................................................ 16 3.1 引言 .................................................................................................... 16 3.2 螢光粉模型 ........................................................................................ 16 3.2.1 遮蔽程度 ................................................................................. 18 3.2.2 吸收及轉換參數 ..................................................................... 20 3.2.3 螢光粉模型驗證與分析 ......................................................... 22 3.3 封裝效率之定義 ................................................................................ 25 3.4 封裝效率之分析 ................................................................................ 27 3.4.1 封裝架構之建立 ..................................................................... 28 3.4.2 封裝效率之分析 ..................................................................... 29 第四章 實驗結果與模擬分析之比較 ............................................................ 50 4.1 引言 .................................................................................................... 50 4.2 反射率量測實驗 ................................................................................ 50 4.3 實際封裝實驗 .................................................................................... 54 vii 4.3.1 晶片出光之計算 ..................................................................... 54 4.3.2 封裝架構之驗證 ..................................................................... 57 第五章 結論 .................................................................................................... 68 參考文獻 ............................................................................................................. 70 中英文名詞對照表 ............................................................................................. 73

    [1] N. Holonyak, Jr. and S. F. Bevacqua, “Coherent (visible) light emission from Ga(As1-x Px) junctions,” Appl. Phys. Lett. 1, 82-83 (1962).
    [2] S. Nakamura, T. Mukai, and M. Senoh, “Candela-class high-brightness InGaN/AIGaN double-heterostructure blue-light-emitting diodes,” Appl. Phys. Lett. 64, 1687-1689 (1994).
    [3] S. Nakamura, T. Mukai, and M. Senoh, “High-brightness InGaN/AIGaN double-heterostructure blue-green-lightemitting diodes,” J. Appl. Phys. 76, 8189-8191 (1994).
    [4] Y. Shimizu, K. Sakano, Y. Noguchi, and T. Moriguchi, “Light emitting device having a nitride compound semiconductor and a phosphor containing a garnet fluorescent material,” United States Patent, US 5998925, Dec.7 (1999).
    [5] T. F. McNulty, D. D. Doxsee, and J. W. Rose, “UV reflector and UV-based light source having reduced UV radiation leakage incorporating the same,” United States Patent, Us 6686676 B2 (2004).
    [6] J. Yu, C. F. Guo, Z. Y. Ren, and J. T. Bai, “Photoluminescence of double-color-emitting phosphor Ca5(PO4)3Cl:Eu2+, Mn2+ for near-UV LED,” Opt. Laser Technol. 43, 762-766 (2011).
    [7] W. J. Park, Y. H. Song, and D. H. Yoon, “Synthesis and luminescent characteristics of Ca2-xSrxSiO4:Eu2+ as a potential green-emitting phosphor for near UV-white LED applications,” Mater. Sci. Eng. B 173, 76-79 (2010).
    [8] Y. Sato, N. Takahashi, and S. Sato, “Full-color fluorescent display devices using a near-UV light-emitting diode,” Jpn. J. Appl. Phys. 35, 838-839 (1996).
    [9] C. H. Hung and C. H. Tien, “Phosphor-converted LED modeling by bidirectional photometric data,” Opt. Express 18, A261-A271 (2010).
    [10] P. Schlotter, R. Schmidt, and J. Schneider, “Luminescence conversion of blue light emitting diodes,” Appl. Phys. A 64, 417-418 (1997).
    [11] S. Nakamura and G. Fasol, The Blue Laser Diode: GaN based light emitters and lasers (Spinger, Berlin and New York, 1997).
    [12] R. Mueller-Mach, G. Mueller, M. R. Krames, H. A. Höppe, F. Stadler, W. Schnick, T. Juestel, and P. Schmidt, “Highly efficient all-nitride phosphor- converted white light emitting diode,” Phys. Stat. Sol. 202, 1727-1732 (2005).
    [13] C. C. Yang, C. M. Lin, Y. J. Chen, Y. T. Wu, and S. R. Chuang, “Highly stable three-band white light from an InGaN-based blue light-emitting diode chip precoated with (oxy)nitride green/red phosphors,” Appl. Phys. Lett. 90, 123501: 1-3 (2007).
    [14] W. Chung, H. J. Yu, S. H. Park, B. H. Chun, and S. H. Kim, “YAG and CdSe/ZnSe nanoparticles hybrid phosphor for white LED with high color rendering index,” Mater. Chem. Phys. 126, 162–166, (2011).
    [15] S. Muthu, F. J. P. Schuurmans, and M. D. Pashley, “Red, green, and blue LEDs for white light illumination,” IEEE J. Select. Topics Quantum Electron. 8, 333-338 (2002).
    [16] A. Zukauskas, F. Ivanauskas, R. Vaicekauskas, M. S. Shur, and R. Gaska, “Optimization of multichip white solid-state lighting source with four or more LEDs,” Proc. SPIE 4445, 148-155 (2001).
    [17] LEDinside, http://www.ledinside.com.tw/node/9288.
    [18] LEDinside, http://www.ledinside.com.tw/node/15432.
    [19] LEDinside, http://www.ledinside.com.tw/node/15440.
    [20] R. C. Jordan, J. Bauer, and H. Oppermann, “Optimized heat transfer and homogeneous color converting for ultra high brightness LED package,” Proc. SPIE 6198, 61980B-1-61980B-12 (2006).
    [21] M. Aril, S. Weaver, C. Becker, M. Hsing, and A Srivastava, “Effects of localized heat generations due to the color conversion in phosphor particles and layers of high brightness light emitting diodes,” Presented at ASME/IEEE Int. Electronic Packaging Technical Conf. and Exhibition 1, 611-619 (2003).
    [22] N. Narendran, Y. Gu, J. P. Freyssinier-Nova, and Y. Zhu, “Extracting phosphor-scattered photons to improve white LED efficiency,” Phy. Stat. Sol. (a) 202, R60-R62 (2005).
    [23] H. Luo, J. K. Kim, E. F. Schubert, J. Cho, C. Sone, and Y. Park, “Analysis of high-power packages for phosphor-based white-light-emitting diodes,” Appl. Phys. Lett. 86, 243505: 1-3 (2005).
    [24] S. C. Allen and A. J. Steckl, “ELiXIR- solid-state luminaire with enhanced light extraction by internal,” J. Display Technol. 3, 155-159 (2007).
    [25] Z. Liu, S. Liu, K. Wang, and X. Luo, “Effects of phosphor’s location on LED packaging performance,” ICEPT-HDP, 1-7 (2008).
    [26] D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P.S. Martin, and S. L. Rudaz, “Illumination with solid state lighting technology,” IEEE J. Select. Topics Quantum Electron. 8, 310-320 (2002).
    [27] H. T. Huang, C. C. Tsai, and Y. P. Huang, “Conformal phosphor coating using pulsed spray to reduce color deviation of white LEDs,” Opt. Express 18, A201-A206 (2010).
    [28] B. Hou, H. B. Rao, and J. F. Li, “Methods of increasing luminous efficiency of phosphor-converted LED realized by conformal phosphor coating,” J. Display Technol. 5, 57-60 (2009).
    [29] M. T. Lin, S. P. Ying, M. Y. Lin, K. Y. Tai, S. C. Tai, C. H. Liu, J. C. Chen, and C. C. Sun, “Ring remote phosphor structure for phosphor-converted white LEDs,” Photon. Technol. Lett. 22, 574-576 (2010).
    [30] C. Sommer, F. Reil, J. R. Krenn, P. Hartmann, P. Pachler, S. Tasch, and F. P. Wenzl, “The impact of inhomogeneities in the phosphor distribution on the device performance of phosphor-converted high-power white LED light sources,” J. Lightw. Technol. 28, 3226-3232 (2010).
    [31] Z. Y. Liu, S. Liu, K. Wang, and X. B. Luo, “Studies on optical consistency of white LEDs affected by phosphor thickness and concentration using optical simulation,” IEEE Transactions on Components and Packaging Technologies 33, 680-687 (2010).
    [32] Z. Y. Liu, S. Liu, K. Wang, and X. B. Luo, “Status and prospects for phosphor-based white LED packaging,” Frontiers of Optoelectronics in China 2, 119-140 (2009).
    [33] E. F. Schubert, Light-emitting Diodes (Cambridge University Press, New York, 2006).
    [34] 劉如熹、劉宇桓,發光二極體用氧氮螢光粉介紹,全華圖書股份有限公司,台北市,中華民國九十五年。
    [35] Philips Lumileds Lighting Company, http://www.philipslumileds.com/uploads/26/DS41-pdf.
    [36] Philips Lumileds Lighting Company, http://www.philipslumileds.com/pdfs/DS63.pdf.
    [37] Cree, Inc., www.cree.com/products/xlamp_xpe.asp.
    [38] 何信穎,白光 LED 之YAG 螢光粉光學模型之研究,國立中央大學光電科學與工程學系碩士論文,民國九十六年。
    [39] 紀葦世,高效能YAG螢光粉之特性量測與模型,元智大學光電工程研究所碩士論文,民國九十九年。
    [40] S. A. Schafer, “Quasi-Monte Carlo methods: applications to modeling of light transport in tissue,” Proc. SPIE 2681, 317-324 (1996).
    [41] Z. Liu, K. Wang, X. Luo, and S. Liu, “Precise optical modeling of blue light-emitting diodes by Monte Carlo ray-tracing,” Opt. Express 18, 9398-9412 (2010).
    [42] D. Toublanc, “Henyey-Greenstein and Mie phase functions in Monte Carlo radiative transfer computations,” Appl. Opt. 35, 3270-3274 (1996).
    [43] Cree, Inc., http://www.cree.com/products/pdf/CPR3DW.pdf.
    [44] 陳靜儀,矽酸鹽螢光粉用於白光LED之光學模型,國立中央大學光電科學與工程學系碩士論文,民國九十七年。
    [45] 陳正健,白光LED封裝光學品質之研究,國立中央大學光電科學與工程學系碩士論文,民國九十七年。

    QR CODE
    :::