| 研究生: |
陳瀅琁 Ying-Xuan Chen |
|---|---|
| 論文名稱: |
科學酬載氣暉影像儀模擬設計 |
| 指導教授: | 郭政靈 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
地球科學學院 - 太空科學研究所 Graduate Institute of Space Science |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 79 |
| 中文關鍵詞: | 氣暉 、立方衛星 、樹莓派 、Pi NoIR相機模組 |
| 外文關鍵詞: | Airglow, CubeSat, Raspberry Pi, Pi NoIR Camera Board |
| 相關次數: | 點閱:15 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
氣暉,是位在地球高層大氣的發光現象,本研究論文將著重於762nm (Atmospheric O2(0-0) band)與630nm (O(1D)波段)兩個波段進行研究分析,以規劃設計立方衛星的光學酬載。首先,我們選擇模擬時間為2010年春分,透過IRI-2007模式獲得帶電粒子密度、MSISE模式獲得中性粒子密度後計算762nm與630nm氣暉的體積放射率,接著估計天底方向 (nadir-view) 觀測時,氣暉的亮度與全球分布,並計算模擬衛星由臨邊方向 (limb-view) 觀測氣暉的預期結果,將兩數值進行比較分析,以提供氣暉觀測儀器的設計參考。
氣暉影像儀規劃選擇樹莓派相機模組(Pi NoIR Camera Board),因其具有成本低、體積小、重量輕及耗能低的優勢,並進行光學實驗驗證,包含空間解析度、觀測視野以及響應程度三項測試。根據光學實驗結果,觀測762nm與630nm波段氣暉,曝光時間設定分別約為150 ms 與1s。透過實驗評估觀測酬載設計之可行性,在不考慮太空中輻射的影響的情況下,我們建議未來立方衛星可使用樹莓派相機模組作為太空中的氣暉影像儀。
The airglow is a luminous phenomenon in the upper atmosphere. The 762nm and 630nm airglow emissions are selected to be designed for the optical payload of CubeSate. First, we simulate the 762nm and 630nm airglow by using the density of charged particles from IRI-2007 and neutral particles from MSISE model in spring of 2010. We can calculate the volume emission rates of 762nm and 630nm emissions, which are estimated for global distribution of airglow brightness in nadir-view and for the satellite measurement of the airglow brightness in limb-view. The calculated brightness of airglow emissions from nadir and limb-view can be used to testify the performance of imager sensor onboard CubeSate.
We select the Pi NoIR camera module (Raspberry Pi board) as the imager sensor because of its advantages of low-cost, compact, light-weight and low-power. We testified the performance of spatial resolution, field of view and the responsivity of the camera module. Based on our results of optical experiments, we estimate the imager exposure time of 762nm and 630nm emissions is required at least 150 ms and 1s, respectively. We suggest that the Raspberry Pi camera module can be used to observe airglow in space without considering radiance damage.
Abreu, V. J., A. Bucholtz, P. B. Hays, D. Ortland, W. R. Skinner, and J. H. Yee (1989), Absorption and emission line shapes in the O2 atmospheric bands: Theoretical model and limb viewing simulations, Appl. Opt, 28, 2128-2137.
Applied Image Products USAF-1951 Resolution Targets
https://www.appliedimage.com/products/test-targets-and-charts-1/usaf-1951-resolution-targets
Belyaev, A. N., V. V. Alpatov, E. Blanc, and V. E. Melnikov (2006), Space-based observations of O2 A (0,0) band emission near the solar terminator and their interpretation, Advances in Space Research, 38(11), 2366-2373, doi:http://dx.doi.org/10.1016/j.asr.2006.05.021.
Bilitza, D., and B. W. Reinisch (2008), International Reference Ionosphere 2007: Improvements and new parameters, Advances in Space Research, 42(4), 599-609, doi:http://dx.doi.org/10.1016/j.asr.2007.07.048.
Burrage, M. D., N. Arvin, W. R. Skinner, and P. B. Hays (1994), Observations of the O2 atmospheric band nightglow by the high resolution Doppler imager, Journal of Geophysical Research: Space Physics, 99(A8), 15017-15023, doi:10.1029/94JA00791.
Chiang, C.-Y., T.-F. Chang, S. W.-Y. Tam, T.-Y. Huang, A. B.-C. Chen, H.-T. Su, and a. R.-R. Hsu (2013), Global Observations of the 630-nm Nightglow and Patterns of Brightness Measured by ISUAL, Terrestrial, Atmospheric and Oceanic Sciences 24, 283-293, doi:10.3319/TAO.2012.12.13.01(SEC).
CURTIS, H. D. (2005). Orbital mechanics for engineering students. Amsterdam, Elsevier Butterworth Heinemann
Greer, R. G. H., E. J. Llewellyn, B. H. Solheim, and G. Witt (1981), The excitation of O2(b1Σg+) in the nightglow, Planetary and Space Science, 29(4), 383-389, doi:http://dx.doi.org/10.1016/0032-0633(81)90081-7.
Huang, T. Y., and R. George (2014), Simulations of gravity wave‐induced variations of the OH(8,3), O2(0,1), and O(1S) airglow emissions in the MLT region, Journal of Geophysical Research: Space Physics, 119(3), 2149-2159, doi:10.1002/2013JA019296.
IMAP (2012-2015), ISS-IMAP mission, edited, IMAP working group.
http://www.iss-imap.org/
Liu, A. Z., and G. R. Swenson (2003), A modeling study of O2 and OH airglow perturbations induced by atmospheric gravity waves, Journal of Geophysical Research: Atmospheres, 108(D4), n/a-n/a, doi:10.1029/2002JD002474.
Liu, G., and G. G. Shepherd (2006), Perturbed profiles of oxygen nightglow emissions as observed by WINDII on UARS, Journal of Atmospheric and Solar-Terrestrial Physics, 68(9), 1018-1028, doi:http://dx.doi.org/10.1016/j.jastp.2005.12.004.
McDade, I. C. (1997), Laboratory measurements required for upper atmospheric remote sensing of atomic oxygen, Advances in Space Research, 19(4), 653-661, doi:http://dx.doi.org/10.1016/S0273-1177(97)00159-2.
McDade, I. C., D. P. Murtagh, R. G. H. Greer, P. H. G. Dickinson, G. Witt, J. Stegman, E. J. Llewellyn, L. Thomas, and D. B. Jenkins (1986), ETON 2: Quenching parameters for the proposed precursors of O2(b1Σg+) and O(1S) in the terrestrial nightglow, Planetary and Space Science, 34(9), 789-800, doi:http://dx.doi.org/10.1016/0032-0633(86)90075-9.
Mende, S. B., P. M. Banks, R. Nobles, O. K. Garriott, and J. Hoffman (1983), Photographic observations of Earth's airglow from space, Geophysical Research Letters, 10(11), 1108-1111, doi:10.1029/GL010i011p01108.
Mende, S. B., G. R. Swenson, S. P. Geller, R. A. Viereck, E. Murad, and C. P. Pike (1993), Limb view spectrum of the Earth's airglow, Journal of Geophysical Research: Space Physics, 98(A11), 19117-19125, doi:10.1029/93JA02282.
Mlynczak, M. G., F. Morgan, J. H. Yee, P. Espy, D. Murtagh, B. Marshall, and F. Schmidlin (2001), Simultaneous measurements of the O2(¹Δ) and O2(¹Σ) Airglows and ozone in the daytime mesosphere, Geophysical Research Letters, 28(6), 999-1002, doi:10.1029/2000GL012423.
Murtagh, D. P., G. Witt, J. Stegman, I. C. McDade, E. J. Llewellyn, F. Harris, and R. G. H. Greer (1990), An assessment of proposed O(1S) and O2(b1Σg+) nightglow excitation parameters, Planetary and Space Science, 38(1), 43-53, doi:http://dx.doi.org/10.1016/0032-0633(90)90004-A.
Ortland, D. A., P. B. Hays, W. R. Skinner, and J. H. Yee (1998), Remote sensing of mesospheric temperature and O2(1Σ) band volume emission rates with the high-resolution Doppler imager, Journal of Geophysical Research: Atmospheres, 103(D2), 1821-1835, doi:10.1029/97JD02794.
Picone, J. M., A. E. Hedin, D. P. Drob, and A. C. Aikin (2002), NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues, Journal of Geophysical Research: Space Physics, 107(A12), SIA 15-11-SIA 15-16, doi:10.1029/2002JA009430.
Raspberry Pi Hardware documentation-camera module
https://www.raspberrypi.org/documentation/hardware/
Reber, C. A. (1993), The upper atmosphere research satellite (UARS), Geophysical Research Letters, 20(12), 1215-1218, doi:10.1029/93GL01103.
Reber, C. A., C. E. Trevathan, R. J. McNeal, and M. R. Luther (1993), The Upper Atmosphere Research Satellite (UARS) mission, Journal of Geophysical Research: Atmospheres, 98(D6), 10643-10647, doi:10.1029/92JD02828.
Shepherd, G. G., et al. (2012), The Wind Imaging Interferometer (WINDII) on the Upper Atmosphere Research Satellite: A 20 year perspective, Reviews of Geophysics, 50(2), n/a-n/a, doi:10.1029/2012RG000390.
Vlasov, M. N., M. J. Nicolls, M. C. Kelley, S. M. Smith, N. Aponte, and S. A. González (2005), Modeling of airglow and ionospheric parameters at Arecibo during quiet and disturbed periods in October 2002, Journal of Geophysical Research: Space Physics, 110(A7), n/a-n/a, doi:10.1029/2005JA011074.
Wallace, L., and D. M. Hunten (1968), Dayglow of the oxygen A band, Journal of Geophysical Research, 73(15), 4813-4834, doi:10.1029/JA073i015p04813.
Walterscheid, R. L., J. H. Hecht, R. a. Vincent, I. m. Reid, J. Woithe, and M. P. Hickey (1999), Analysis and interpretation of airglow and radar observations of quasi-monochromatic gravity waves in the upper mesosphere and lower thermosphere over Adelaide, Australia (35°S, 138°E), Journal of Atmospheric and Solar-Terrestrial Physics, 61(6), 461-478, doi:http://dx.doi.org/10.1016/S1364-6826(99)00002-4.
Watanabe, T., M. Nakamura, and T. Ogawa (1981), Rocket measurements of O2 atmospheric and OH Meinel Bands in the airglow, Journal of Geophysical Research: Space Physics, 86(A7), 5768-5774, doi:10.1029/JA086iA07p05768.
Witt, G., J. Stegman, B. H. Solheim, and E. J. Llewellyn (1979), A measurement of the O2(b1Σg+−X3Σg−) atmospheric band and the OI(1S) green line in the nightglow, Planetary and Space Science, 27(4), 341-350, doi:http://dx.doi.org/10.1016/0032-0633(79)90111-9.
沈崇民,O2(b1Sg+)氣輝的全球分布與變化,國立中央大學物理研究所,碩士論文,2001
李宜珊,福衛三號及其後續衛星計畫之近即時自動化定軌系統:低軌衛星軌道誤差及鐘差對掩星計算成果之影響,國立交通大學土木工程系所,博士論文,2012
周明翰,科學酬載暉光剖面儀之實作與測試,國立中央大學太空科學研究所,碩士論文,2016
劉格瑋,福衛二號6300A電離層大氣輝光與福衛三號電子密度觀測之長期比較,國立成功大學物理研究所,碩士論文,2009