跳到主要內容

簡易檢索 / 詳目顯示

研究生: 吳政峰
Zhen-Fong Wu
論文名稱: 順序特徵結構設計研究及其應用在最大強健穩定度與最小迴授增益
指導教授: 詹益仁
Yi-Jen Chan
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
畢業學年度: 88
語文別: 中文
論文頁數: 105
中文關鍵詞: 順序特徵結構設計
相關次數: 點閱:8下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • 近年來順序式特徵結構設計法的提出,改善了過去各種全狀態特徵結構設計的共同缺點,因為順序式的特徵結構設計方式可以一次只設計一個或一群的特徵向量,所以比全狀態式的特徵結構設計方法更能容易達成所有閉迴路特徵向量必須是線性獨立之條件。
    在本論文中,提出了另一種經由狀態迴授控制之順序式特徵結構設計法,其較能使系統具有簡易的設計結構模式,且其分解方式較不需耗費時間,最後並將此方法成功地應用於最大強健穩定度與最小迴授增益之設計。


    內 容 頁 碼 摘 要 i 目 錄 ii 圖 目 iv 第一章 緒論 1 1.1引言 1 1.2文獻回顧 2 1.3 順序特徵結構之研究動機 3 1.4 順序特徵結構之研究目的 5 1.5論文架構 7 第二章 基礎理論 9 2.1特徵結構設計之問題陳述 9 2.2順序特徵結構設計之主要結果 10 2.3順序特徵結構設計法之優點 19 2.4實例說明 20 2.5結語 28 第三章 順序式特徵結構設計法對於系統具有共 軛複數根與重根之設計 29 3.1將開迴路系統之共軛複數根設計至閉迴路系統 之共軛複數根 30 3.2將開迴路系統之共軛複數根設計至閉迴路系統 之相異實數根 3.3將開迴路系統之重根設計至閉迴路系統之共軛複數根 45 3.4將開迴路系統之相異實根設計至閉迴路系統之重根 3.5 實例說明 61 3.6 結語 70 第四章 具有最大強健穩定度之順序式特徵結構設計法 71 4.1最大強健穩定度問題之敘述 71 4.2系統最大強健穩定度之設計 72 4.3 實例說明 74 4.4 結語 79 第五章 具有最小迴授增益之順序式特徵結構設計法 80 5.1最小迴授增益值設計問提之敘述 80 5.2最小迴授增益值設計之方法 81 5.3實例說明 83 5.4結語 90 第六章 結論與未來之展望 91 附錄(I-VI) 93 參考文獻 105

    [1] ANDRY, A.N., JR.: ‘Eigenstructure Assignment for Linear Systems’, IEEE. Transactions on Aerospace and Electronic Systems. Vol. Aes-19, No.5, pp. 711-729 , 1983.
    [2] INNOCENTI, M., and STANZIOI, A, C.: ‘Peforemance robustness trade off of eigenstructure assignment applied to rotoreraft‘, Aeronaut. J., pp. 124-131 , 1990.
    [3] LIN, J.-J. and CHUNG, H,Y.: ‘Sequential eigenstructure assignment with minimal state-feedback gain, Chinese lnstitute of Engineers, Vol. 22, No. 2, pp. 149-157 , 1999.
    [4] LIN, J.-J. and CHUNG, H,Y.: ‘Sequential eigenstructure assignment with maximal stability robustness, Chinese lnstitute of Engineers, Vol. 22, No. 2, pp. 203-210 , 1999.
    [5] ENSOR, J. and DAVIES, R.: ‘Assignment of reduced sensitivity eigenstructure, IEE Proc,-Control Theory Appl, Vol. 147 No. 1, January 2000
    [6] MOORE, B.C.: ‘On the flexibility offered by state feedback in multivariable systems beyond closed loop eigenvalue assignment’, IEEE Trans. Automatic. Control, Vol. 21, pp. 689-692 , 1976.
    [7] PORTER, B., and D’AZZO, J.J.: ‘closed-loop eigenvalue assignment by state feedback in multivariable linear systems’, Int. J. Control, Vol. 21, pp. 478-492, 1978.
    [8] FAHMY, M.M., and O’REILLY, J.: ‘On eigenstructure assignment in linear multivariable systems’, IEEE Trans. Automatic. Control, pp. 690-693 , 1982.
    [9] ROPPENCKER G.: ‘Pole assignment by state feedback’, Regelungstechnik,
    pp. 228-233 (in German) , 1981.
    [10] FAHMY, M.M., and O’REILLY, J.: ‘Eigenstructure assignment in linear multivariable systems a parametric solution’, IEEE Tran. Automatic. Control,
    AC- 27, 4 , pp. 991-993 , 1983.
    [11] FAHMY, M.M., and TANTAWY, H.S.: ‘Eigenstructure assignment via linear state-feedback control’, Int. J. Control, 40, pp. 161-178 , 1984.
    [12] ROPPENCKER, G.: ‘On parametric state feedback design’, Int. J. Control, 43, pp. 793-804 , 1986.
    [13] ASKARPOUR, S., and OWENS, T.J.: ‘Identifying the Jordan canonical form and associated non-singular transformation’. Proceedings of the 7th International Colloquium on Differential Equations, Plovdiv, Bulgaria, pp. 1-7 , 1996.
    [14] ASKARPOUR, S., and OWENS, T.J.: ‘Integrated approach to eigenstructure assignment by output feedback: The case of multiple eigenvalues’, IEE Proc.-Control Theory , 145, pp. 265- 268 , 1998.
    [15] ASKARPOUR, S., and OWENS, T.J.: ‘Integrated approach to eigenstructure assignment by state feedback, IEE Proc.-Control Theory Appl., Vol. 146, No. 2, March 1999.
    [16] LIN, J.-J. and WU, Y.-C.: ‘Parametric multiple eigenvalue shifting with minimum eigenvalue sensitivity via state-feedback based on block schur form, Control-Theory and Advanced Technology Vol. 10, No. 3, pp.347-364 , 1994.
    [17] O’REILLY, J., and FAHMY, M.M.: ‘The minimum number of degree of freedom in state feedback control’, Int. J. Control, 41, pp.749-768 , 1985.

    QR CODE
    :::