跳到主要內容

簡易檢索 / 詳目顯示

研究生: 黎俊賢
Chun-Hsien Li
論文名稱: 連續柴氏長晶過程中三坩堝熱傳與質傳的數值模擬
Numerical simulation of heat and mass transfer during continuous CZ crystal growth with triple crucible
指導教授: 陳志臣
Jyh-Chen Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 91
中文關鍵詞: 連續柴氏長晶法三坩堝數值模擬
外文關鍵詞: CCZ, Triple crucible, Numerical simulation
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 連續柴氏長晶法(Continuous Czochralski crystal growth, CCZ)不同於傳統柴氏長晶法(Czochralski crystal growth, CZ)在外坩堝內部設置多個隔板的設計,使得在連續進料(多晶矽顆粒)時,能夠維持熔湯的高度,使矽顆粒在融化過程能夠均勻受熱,在沿晶體⁄熔湯固液界面處不會出現未融化之矽顆粒,以至於影響所生長單晶矽晶棒之良率,但是因為多了隔板的設置,導致氧濃度上升且熔湯內的流動較不穩定,而長晶過程中的熱傳、質傳也會受到隔板的影響,於是本研究將利用數值模擬,探討外坩堝內設置兩個隔板對熔湯的流動造成的影響,以及不同隔板深度、晶體轉速、坩堝轉速,分析三坩堝的設置對長晶條件之影響。
    本研究比較隔板不同分區、深度,得到結果為靠近長晶區之隔板L1長和遠離長晶區之隔板L2短的設計,能阻擋氧氣與熱量傳入長晶區以減少固液界面之氧濃度,而本研究最後比較了單坩堝、雙坩堝、三坩堝之硼摻雜效果,而結果表明使用三坩堝進行硼摻雜,雖然氧濃度相比單坩堝、雙坩堝是會高出許多,但是熔湯內部之硼摻雜濃度分佈均勻且摻雜濃度較其他兩者高。


    The continuous Czochralski crystal growth (CCZ) method is different from the traditional Czochralski crystal growth (CZ) method in which multiple partitions are set inside the outer crucible, so that when the continuous feeding (polysilicon particles) is used to maintain the height of the melt, so that the silicon particles can be heated evenly during the melting process, and there will be decreases the unmelted silicon particles in the solid-liquid interface of the crystal/melt, so as to affect the yield of the single crystal silicon ingots grown. However, due to the addition of partitions, the oxygen concentration increases and the flow in the melt is unstable, and the heat transfer and mass transfer during the crystal growth process will also be affected by the partitions. Therefore, this study will use numerical values simulation is carried out to discuss the influence of two partitions in the outer crucible on the melt flow, and the depth of the partitions, the crystal rotation rate and the crucible rotation rate.
    This study compares the different partitions and depths of partitions. The results obtained are that the partition L1 near the crystal growth zone is long and the partition L2 far away from the crystal growth zone is short. The design can block the introduction of oxygen and heat into the crystal growth zone to reduce the oxygen concentration along the crystal/melt interface. And this study finally compared the boron doping effect of single crucible, double crucible, and triple crucible, and the result was that three crucibles were used for boron doping, although the oxygen concentration was much higher than that of single crucible and double crucible, but the boron doping concentration distribution inside the melt is uniform and the doping concentration is higher than the other two.

    目錄 摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VI 表目錄 IX 符號說明 X 第一章 緒論 1 1.1 研究背景 1 1.2 連續柴氏長晶法與三坩堝之應用 2 1.3 文獻回顧 3 1.4 研究目的與動機 7 第二章 研究方法 9 2.1 物理系統與基本假設 9 2.1.1 統御方程式 13 2.1.2 邊界條件 14 第三章 數值方法 19 3.1 數值方法 19 3.2 網格設定與收斂性測試 21 3.3 公差收斂性測試 23 第四章 結果與討論 25 4.1 CCZ模型優化 25 4.1.2 熱系統優化 34 4.1.3 不同分區和深度的隔板之結果比較 45 4.2 晶轉與堝轉間不同轉速的比較結果 51 4.2.1 晶轉 52 4.2.2 堝轉 58 4.3 比較單坩堝、雙坩堝、三坩堝的硼摻雜效果 64 第五章 結論與未來方向 71 5.1 結論 71 5.2 未來方向 72 參考文獻 73

    [1] N. Ono, M. Kida, Y. Arai, K. Sahira. A numerical study of the influence of feeding polycrystalline silicon granules on melt temperature in the continuous Czochralski process, Journal of Crystal Growth, 132(1-2), 297–304, 1993.
    [2] A. Anselmo, V. Prasad, J. Koziol, K. P. Gupta, Numerical and experimental study of a solid pellet feed continuous Czochralski growth process for silicon single crystals, Journal of Crystal Growth, 131(1-2), 247–264, 1993.
    [3] I. H. Jafri, V. Prasad, A. P. Anselmo, K. P. Gupta, Role of crucible partition in improving Czochralski melt conditions, Journal of Crystal Growth, 154(3-4), 280–292, 1995.
    [4] T. Kitashima, L. Liu, K. Kitamura, K. Kakimoto, Effects of shape of an inner crucible on convection of lithium niobate melt in a double-crucible Czochralski process using the accelerated crucible rotation technique, Journal of Crystal Growth, 267(3-4), 574–582, 2004.
    [5] C. Wang, H. Zhang, T. Wang, L. Zheng, Solidification interface shape control in a continuous Czochralski silicon growth system, Journal of Crystal Growth, 287(2), 252–257, 2006.
    [6] P.-O. Nam, S.-S. Son, K.-W. Yi, The effect of polycrystalline rod insertion in a low Prandtl number melt for continuous Czochralski system, Journal of Crystal Growth, 312(8), 1458–1462, 2010.
    [7] O. A. Noghabi, M. Jomâa, M. M’hamdi, Analysis of W-shape melt/crystal interface formation in Czochralski silicon crystal growth, Journal of Crystal Growth, 362, 77–82, 2013.
    [8] O. R. Asadi Noghabi, M. M’Hamdi, M. Jomâa, Sensitivity analyses of furnace material properties in the Czochralski crystal growth method for silicon, Measurement Science and Technology, 24(1), 015601, 2013.
    [9] L․ Yu Ri, J. Jae Hak, Research for high quality ingot production in large diameter continuous Czochralski method, Korea Photovoltaic Society, Volume 4 Issue 3, 124-129, 2016.
    [10] W. Zhao, L. Liu, Control of heat transfer in continuous-feeding Czochralski-silicon crystal growth with a water-cooled jacket, Journal of Crystal Growth, 458, 31–36, 2017.
    [11] W. Zhao, J. Li, L. Liu, Control of oxygen impurities in a continuous-feeding Czochralski-silicon crystal growth by the double-crucible method, Crystals, 11(3), 264, 2021.
    [12] A. Giannattasio, A simplified model to predict resistivity profiles in continuous-feeding Cz-silicon crystals, Journal of Crystal Growth, 542, 125686, 2020.
    [13] O. Gräbner, A. Mühe, G. Müller, E. Tomzig, J. Virbulis, W. von Ammon, Analysis of turbulent flow in silicon melts by optical temperature measurement, Materials Science and Engineering: B, 73(1-3), 130–133, 2000.
    [14] A.D. Smirnov, V.V. Kalaev, Development of oxygen transport model in Czochralski growth of silicon crystals, Journal of Crystal Growth, 310(12), 2970–2976, 2008.

    QR CODE
    :::