跳到主要內容

簡易檢索 / 詳目顯示

研究生: 曾煜輝
Yuhwai Tseng
論文名稱: 寬頻人體傳輸通信系統的設計與分析
Design and Analysis of a Wideband Intra-Body Communication System
指導教授: 蘇朝琴
Chauchin Su
劉建男
Chien-Nan Liu
口試委員:
學位類別: 博士
Doctor
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
畢業學年度: 98
語文別: 英文
論文頁數: 103
中文關鍵詞: 方波測試解迴旋人體通信
外文關鍵詞: Square Test Stimulus., Deconvolution, Intra-Body Communication
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為了能減少量測程序,且精準的量測及計算人身體各組成部份的平均阻抗值,我們使用方波解迴旋技術取代傳統使用弦波的量測技術,同時建構一個由人身體各部的生物性阻抗所組成的等效電路系統,然後從系統的觀點來量測及估算人身體的平均電子阻抗。除此之外我們從方波信號中解迴旋以粹取等效電路系統的頻率響應,並將此粹取值與模擬結果比對,結果顯示本文所提出用來估算人體平均阻抗的方法是可行的。
    本文接著簡化上述所提出的人身體各部的生物性阻抗所組成的等效電路系統,應用在靜電耦合人體傳輸通信系統中,並依此簡化的等效電路建構了靜電耦合人體傳輸通信通道模型。同時使用電池電源以環型振盪器為架構的方波產生器,來量測靜電耦合人體傳輸通信系統通道的傳輸特性,以符合靜電耦合人體傳輸通信系統的通道環境。本文所建構的靜電耦合人體傳輸通信通道模型經由方波解迴旋及頻譜的分析驗證顯示,一個靜電耦合人體傳輸通信通道至少有22.5MHz的頻寬範圍,至少可供10Mbps以上的信號傳輸。
    然後從前文所提出的靜電耦合人體傳輸通信通道電路簡化模型中,發現一個會隨著負載阻抗、人體本身及所處環境而變化的高通極點Ph3dB存在。這個高通極點衰減低頻的信號值並降低系統的信號與雜訊比。本文從信號與雜訊的行為模式上去分析高通極點Ph3dB 對系統的影響,在不同的Ph3dB下,透過模擬與量測系統的信號與雜訊比,獲得一個最佳的Ph3dB值在30kHz與40kHz之間。最後經由Xilinx FPGA實驗板的驗證顯示,在傳送電壓為3.3伏,信號功率消耗為560uW,至少有16Mbps的傳送速率。


    A square test waveform replaces a series of different sinusoidal test waveforms to simplify measurements of the characteristic of the human body channel in the Electrostatic Coupling Intra-Body communication (ESC IBC) system. The human body channel is analyzed and determined by adopting an equivalent circuit model comprising the biological impedance of body parts. Additionally, the system frequency response is extracted by applying de-convolution on square test waveforms. Then, we measure and evaluate the electrical impedance of a human body from a system perspective. Measurement and simulation results demonstrate the feasibility of the proposed approach for evaluating the electrical impedance of the human body.
    The evaluated bioelectrical impedances with the equivalent circuit model of the human body were utilized to replace the channel of the ESC IBC system. The simplified measurement methodology that is based on the de-convolution on a square test stimulus was employed to measure the transmission characteristic of the ESC IBC channel. Then, a certain model mapping had been done by using battery-powered square waveform generator to mimic the channel model with physical metal wire as the ground return loop to the one that uses the environment as the ground return loop in the ESC IBC system. The proposed channel model is then verified using de-convolution on square waves and spectrum analysis. Results show that the proposed model and measurement methodology are valid for up to 22.5 MHz which allows a data rate of more than 10 Mbps.
    Finally, a simplified signal and noise model, and unit step function are presented respectively to analyze the contribution of the high pass filter function to wideband digital transmission in ESC IBC system since the maximum high pass 3 dB poles that can ensure favorable signal quality in a baseband Intra-Body communication system. The experimental eye diagram gives a data rate of more than 16 Mbps in a digital baseband transmission of the ESC IBC system.

    Chinese Abstract………………………………………………… i English Abstract ……………………………………………… ix 誌謝 ………………………………………………………… xi Table of Contents ……………………………………………… xii List of Figures ……………………………………………… xiv List of Tables ……………………………………………… xvii 1 Introduction………………………………………… 1 1.1 Motivation…………………………………………… 1 1.1.1 Wearable computing………………………………… 1 1.1.2 Personal area network (PAN) …………………… 2 1.1.3 Body area network (BAN) ………………………… 3 1.2 Intra-Body communication (IBC) ………………… 6 1.3 Organization of dissertation…………………… 10 2 Measurement Methodology of the Human Body Channel… 12 2.1 Square test stimulus……………………………… 12 2.2 De-convolution……………………………………… 14 2.3 Battery-powered square wave generator………… 15 2.4 Measurement procedures…………………………… 16 2.5 Safety consideration……………………………… 18 3 Measurement and Evaluation of the Bioelectrical Impedance of the Human Body by Deconvolution of a Square Wave…………………… 21 3.1 Model of the Human Body…………………………… 22 3.2 High-pass system for determining body parts impedance and skin capacitance……………………………… 24 3.3 Low-pass system for determining CB…………… 28 3.4 Experimental setup………………………………… 28 3.5 Results and discussions…………………………… 30 4 Measurement of Characteristic of the ESC IBC Channel…………… 36 4.1 Environment of the ground free in the ESC IBC system………………… 36 4.2 Model of conventional measurement methods…… 38 4.3 Experimental………………………………………… 40 4.4 Results and discussions…………………………… 43 5 Wide-Band Transmission in a Digital Baseband IBC system………… 45 5.1 Model of signal and noise in ESC IBC system… 46 5.2 Determination of the model parameters………… 51 5.2.1 High pass transfer function determining RB, CX and CT…………………… 51 5.2.2 Low pass transfer function determining CB…… 53 5.2.3 Determining CNS from 60 Hz power line signal 54 5.3 Frequency response of the ESC IBC system…… 56 5.4 Unit step response of system high pass-pole to digital signal transmission ……………………………………59 5.5 System eye diagram and estimation of SNR…… 63 5.6 Experimental………………………………………… 65 6 Conclusion…………………………………………… 69 Bibliography ……………………………………………… 72 VITA ………………………………………………………… 81 Publication ……………………………………………… 82

    [1] B. Hodes, and T. Starner, “Introduction to Wearable Computing” Proc. of the 7th international Symposium of IEEE Comp. Soc. on Wearable Computers, NY, USA, October 2003. (http://www.cc.gatech.edu/ccg/iswc03/iswc2003-intro-tutorial.pdf)
    [2] T. G. Zimmerman, “Personal Area Network: Near-Field Intra-Body Communication,” IBM System Journal, Vol. 35, No. 3&4, pp.609-617, 1996.
    [3] PHM – Personal Health Monitoring. Universität Karlsruhe, Institut für Technik der Informationsverarbeitung (ITIV).
    [4] MIThril. MIT Media Lab. (http://www.media.mit.edu/wearables/mithril/)
    [5] Sensatex. Sensatex Inc. (http://www.sensatex.com)
    [6] T. Zimmerman, “Wireless Networked Digital Devices: A New Paradigm for Computing and Communication”. IBM Systems Journal. Vol. 38, No. 4, pp. 566 – 574, 1999. (http://www.research.ibm.com/journal/sj/384/zimmerman.pdf)
    [7] E. Rehmi Post et al, “Intra-body bus for data and power” Proc. of the 1st international Symposium of IEEE Comp. Soc. on Wearable Computers, Washington D. C., USA, pp. 52-55, 1997.
    [8] Y. H. Tseng, C. C. Su, and CN. J. Liu, “Analysis and Design of Wide-Band Digital Transmission in an Electrostatic-Coupling Intra-Body Communication System,” IEICE Trans. Comm., Vol. E92-B, No. 11, pp. 3557-3563, Nov. 2009.
    [9] T. Handa, S. Shoji, S. Ike, S. Takeda and T. Sekiguchi, “A Very Low-Power Comsumption Wireless ECG Monitoring System Using Body as a Signal Transmission Medium,” 5th Int. Conf. Solid-State Sens. Actuat. Microsystems, Chicago, USA, pp.1003-1006, June 1997.
    [10] J. A. Ruiz and S. Shimatoto, “Experimental Evaluation of Body Channel Response and Digital Modulation Schemes for Intra-Body communication,” IEEE Int. Conf. Com., Vol. 1, pp. 349-354, June 2006.
    [11] J. A. Ruiz and S. Shimatoto, “Novel Communication Services Based on Human Body and Environment Interaction: Application inside Trains and Applications for Handi-capped People,” IEEE Int. Conf. Com., Vol. 1, pp. 2240-2245, June 2006.
    [12] K. Hachisuka, A. Nakata, T, Takeda, Y. Terauchi, K. Shiba, K. Sasaki, H. Hosaka and K. Itao, “Development and Performance Analysis of an Intra-body Communication Device,” Tech. Digest, 12th Int. Conf. Solid-State Sens. Actuat. Microsystems, Boston, MA, USA, pp.1722-1725, June 2003.
    [13] K. Hachisuka, Y. Terauchi, Y. Kishi, T. Hirota, K. Sasaki, H. Hosaka, and K. Ito, “Simplified Circuit Modeling and Fabrication of Intra-body Communication Devices,” Tech. Digest, 13th Int. Conf. Solid-State Sens. Actuat. Microsystems, Seoul, Korea, pp.461-464, June 2005.
    [14] J. A. Ruiz and S. Shimatoto, “A Study on the Transmission Characteristic of the Human Body towards Broadband Intra-Body Communications,” Proc. of the 9th Int. Symposium on Consumer Electronics, Macau, PRC, pp. 99-104, June 2005.
    [15] K. Ito, K. Fujii, “Development and Investigation of the Transmission Mechanism of the Wearable Devices Using the Human Body as a Transmission Channel,” IEEE Interna-tional Workshop of Antenna Technology Small Antennas and Novel Metamaterials, pp.140-143, March 2006.
    [16] M. Shinagawa, M. Fukumoto, K. Ochiai, and H. Kyuragi, “A Near-Field-Sensing Transceiver for Intra-body Communication Based on the Electro-optic Effect,” IEEE Trans. Instrumentation and Measurement, Vol. 53, No. 6, pp. 1533-1538, December 2004.
    [17] Seong-Jun Song, Namjun Cho, Hoi-Jun Yoo, “A 0.2-mW 2-Mb/s Digital Transceiver Based on Wideband Signaling for Human Body Communications,” IEEE Journal of Solid-State Circuit, Vol. 42, Issue 9, pp. 2021-2033, Sept. 2007.
    [18] J. G. Webster, “Medical Instrumentation: Application and Design,” Wiley, 1998.
    [19] N. V. Thakor and J. G. Webster, “Ground-free ECG Recording with two Electrodes,” IEEE Trans. Biomed. Eng., Vol. 12, pp. 699-704, Dec. 1980.
    [20] B. B. Winter and J.G. Webster, “Reduction of Interference due to Common Mode Voltage in Biopotential Amplifiers,” IEEE Trans. Biomed. Eng., Vol. 1, No. 1, pp. 58-62, Jan. 1983.
    [21] D. C. Barber and B. H. Brown, “Review Article: Applied Potential Tomography,” J. Phys. E., Vol. 12, pp. 443-448, 1984.
    [22] INTERNATIONAL ELECTROTECHNICAL COMMISSION. Medical Electrical Equipment—Part 1: General Requirements for Safety, 2nd ed. IEC 601-1. Geneva: IEC, 1988.A.
    [23] ASSOCIATION FOR THE ADVANCEMENT OF MEDICAL INSTRUMENTATION. Safe Current Limits for Electromedical Apparatus. ANSI/AAMI ES1—1985. Arlington (Vir.): AAMI, 1985. ISBN 0-910275-50-5.
    [24] World Health Organization, “Electromagnetic Fields (300Hz to 300GHz),” 1993,www.inchem.org/documents/ehc/ehc/ehc137.htm
    [25] J. Rosell, J. Colominas, P. Riu, R. Pallas, and J. G. Webster, “Skin Impedance from 1 Hz to 1 MHz,” IEEE Trans. Biomed. Eng., Vol. 35, No. 8, pp.649-651, August 1988.
    [26] D. Panescu, K. P. Cohen, J. G.Webster, and R. A. Stratbucker, “The Mosaic Electrical Characteristics of the Skin,” IEEE Trans. Biomed. Eng., Vol. 40, No. 5, pp.434-439, May 1993.
    [27] R. P. Areny, and J. G. Webster, “Bioelectric Impedance Measurements Using Synchronous Sampling,” IEEE Trans. Biomed. Eng., Vol. 40, No. 8, pp.824-829, August 1993.
    [28] Y. Yamamoto, and T. Nakamura, “Consideration of Conditions Required for Multi-Channel Simultaneous Bioimpedance Measurement,” IEEE Instrumentation and Measurement Technology Conference, St. Paul, Minesota, USA, pp.18-20, May 1996.
    [29] J. J. Huang, K. S. Cheng, and C. J. Peng, “Temperature-Compensated Bioimpedance System for Estimating Body Composition,” IEEE Engineering in Medicine and Biology, pp.66-73, November/December 2000.
    [30] Y. Yamamoto, H. Isshiki, and T. Nakamura, “Instantaneous Measurement of Electrical Parameters in a Palm during Electrodermal Activity,” IEEE Trans. Instrumentation and Measurement. Eng., Vol. 45, No. 2, pp.483-487, April 1996.
    [31] S. J. Dorgan, and R. B. Reilly, “A Model for Human Skin Impedance during Surface Functional Neuromuscular Stimulation,” IEEE Trans. Rehabilitation. Eng., Vol. 7, No. 3, pp.341-348, September 1999.
    [32] A. F. Coston, and J. K. Li, “Transdermal Drug Delivery: A Comparative Analysis of Skin Impedance Models and Parameters,” Proc. of the 25th Annual International Conference of IEEE EMBS, Cancun, Mexico, pp.17-21, September 2003.
    [33] H. Kanai, M. Haeno, and K. Sakamoto, “Electrical Measurement of Fluid Distribution in Legs and Arms,” Med. Prog. Tech.12: pp.159-170, 1987.
    [34] H. Kanai, I. Chatterjee, and O. P. Gandhi, “Human Body Impedance for Electromagnetic Hazard Analysis in the VLF to MF Band,” IEEE Trans. Microwave Theory and Techniques, Vol. MTT-32, No. 8, pp.763-771, August 1984.
    [35] J. G. Webster, “Electrical Impedance Tomography,” Adam Hilger, New York (1989).
    [36] K. Fujii, K. Ito, and S. Tajima, “A Study on the Calculation Model for Signal Distribution of Wearable Devices using Human Body as a Transmission Channel,” IEICE Trans. Comm, Vol. J87-B, No.9, pp.1383-1390, September 2004.
    [37] K. Fujii, M. Takahashi, K. Ito, K. Hachisuka, Y.Kishi, and K. Sasaki, “ A Study on the Transmission Mechanism for Wearable Device using the Human Body as a Transmis-sion Channel,” IEICE Trans. Comm, Vol. E88-B, No. 6, pp. 2401-2410, 2005.
    [38] IEC (International Electrotechnical Commission), “IEC 61000 ED. 1.2: Electromagnetic compatibility (EMC) - Part 4-2: Testing and measurement techniques – Electrostatic discharge immunity test,” 2001.
    [39] C. Su, and Y. T. Chen, “Intrinsic Response Extraction for the Removal of the Parasitic Effects in Analog Test Buses,” IEEE Trans. Computer-Aided Design of Integrated Circuits and System, Vol. 19, No. 4, April, pp.437-445, 2000.
    [40] N. Cho, J. Yoo, SJ. Song, J. Lee, S. Jeon, HJ. Yoo, “The Human Body Characteristics as a Signal Transmission Medium for Intrabody Communication” IEEE Trans. Microwave and Techniques, Vol.55, No.5, pp.1-7, May 2007.
    [41] Y. H. Tseng, C. C. Su, CN. J. Liu, “Measuring the Transmission Characteristic of the Human Body in an Electrostatic-Coupling Intra Body Communication System using a Square Test Stimulus” IEICE Trans. Fundamentals of Electronics, Communica-tions and Computer Sciences, Vol. E93-A, No.3, pp.664-668, Mar 2010.
    [42] Y. H. Tseng, C. C. Su, CN. J. Liu, “Measuring and Evaluating the Bioelectri-cal Impedance of the Human Body Using Deconvolution of a Square Waveform” IEICE Trans. Information and Systems, Vol.E93-D, No.6, pp.-, June 2010.
    [43] W. L. Tseng, M. S. Nakhla, Y. H. Tseng, CN. J. Liu, and C. C. Su, "Passive model order reduction algorithm for linear time-delay systems," The 16th VLSI Design/CAD Symposium, Hualien, Taiwan, August 2005.
    [44] Y. H. Tseng, and C. C. Su, " A New Approach to Model and Measure Transmission Characteristic of the Human Body channel in Electro-Static Coupling Intra Body Communication system," The 19th VLSI Design/CAD Symposium, Kenting, Taiwan, August 2008.
    [45] P. Blyth, “Converter Address Medical Equipment Compliance,” Power Electronic Technology, pp.38-41, March 2006.
    [46] Tyson, J. HowStuffWorks “How Virtual Private Networks Work”. HowStuffWorks. Inc.. (http://computer.howstuffworks.com/vpn.ht)
    [47] IBM ARC: User – Personal Area Networks. IBM Corporation. (http://www.almaden.ib m.com/cs/user/pan/pan.html)
    [48] M. Shawibold, M. Gmelin, G. V. Wagner, J. Schöchlin, and A. Bolz. “Key Factors for Personal Health Monitoring and Diagnosis Devices”. Forschungszentrum Informatik (FZI). (www.mocomed.org/workshop2002/beitraege/Schwaibold.pdf)
    [49] The Official Wireless Bluetooth Info Site. Bluetooth. (http://www.bluetooth.com)
    [50] T. H. Bullock, “Electroreception,” Ann. Rev. Neuroscience, Vol. 5, pp. 121-170, 1982.
    [51] T. Zimmerman, J.R. Smith, J.A. Paradiso, D. Allport, N. Gershenfeld, ”Applying Electric Field Sensing to Human-Computer Interfaces,” CHI''95 Human Factors in Computing Systems, Denver, ACM Press, May 1995.
    [52] D. A. Weston, “Electromagnetic Compatibility,” Marcel Dekker Publishers, New York, pp. 36, 1991.
    [53] “Texas Instruments, Operational Amplifiers and Comparators,” Data Book, Texas Instruments, Dallas, Texas, Vol. A, pp. 2-369, 1995.
    [54] W. Stalling, “Networking Standards,” Addison-Wesley Publishing, Massachusetts, pp. 23-26, 1993.
    [55] J. R. Smith, “Towards Electric Field Imaging,” MS Thesis, MIT Media Lab, 1995.
    [56] O. Shivers, “BodyTalk and the BodyNet: A Personal Information Infrastructure,” Personal Information Architecture Note 1, MIT Laboratory for Computer Science, Dec. 1993.
    [57] S. Ramo, J. R. Whinnery, T. Van Duzer, “Fields and Waves in Communication Electronics,” Third Edition, John Wiley and Sons, New York, 1994.
    [58] K. Pahlavan, T. H. Probert, M. E. Chase, “Trends in Local Wireless Networks,” IEEE Communications Magazine, pp. 88-95, March 1995.
    [59] N. Gershenfeld, T. Zimmerman, D. Allport, “Non-Contact System For Sensing and Signaling by Externally Induced Intra-Body Currents,” US Patent Application, May 8, 1995.

    QR CODE
    :::