| 研究生: |
簡如杰 Ru-Jie Jian |
|---|---|
| 論文名稱: | Nonlinear Balance Laws with Rotational Source Terms |
| 指導教授: |
洪盟凱
John M. Hong |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 數學系 Department of Mathematics |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 英文 |
| 論文頁數: | 29 |
| 中文關鍵詞: | 非線性雙曲型平衡律 、淺水波方程 、黎曼問題 、旋轉效應 |
| 外文關鍵詞: | Nonlinear hyperbolic balance laws, shallow water equations, Riemann problem, rotational effect |
| 相關次數: | 點閱:20 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本篇論文中,我們探討了在旋轉效應下的非線性雙曲型平衡律,以及討論關於一維平衡律的黎曼問題。此非線性平衡律可以被轉換成沒有源項的系統,但是通量是一個未知及時間的函數。我們利用漸進展開的方法找出此黎曼問題的逼近解。接著,我們拓展此結果去探討伴隨科氏力作用的二維淺水波方程。我們介紹一些轉換方法利用其解對稱的特性,將二維的系統轉換成一維的系統。
In this thesis we study the nonlinear hyperbolic systems of balance laws with rotational effect. The Riemann problem for one-dimensional balance laws is considered. The nonlinear balance laws is transformed into a system without source, but the flux is a function of unknowns and time. The approximate solution of the Riemann problem is constructed by the technique of asymptotic expansion. We extend the results to the two-dimensional shallow water equations with Coriolis force. Some transformations are introduced to transform the two-dimensional system into an one-dimensional system due to the symmetry of solutions.
[1] J. Smoller, Shock Waves and Reaction Diusion Equations, Springer-Verlag,New York, Berlin (1983).
[2] Edwige Godlewski and Pierre-Arnaud Raviart, Numerical approximation of Hyperbolic Systems of Conservation Laws, Springer-Verlag, New York, Berlin, Heidelberg (1996).
[3] C. M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, 2nd edition. Grundlehren der Mathematischen issenschaften [Fundamental Principles of Mathematical Sciences], 325. Springer-Verlag, Berlin, 2005.
[4] Benoit Cushman-Roisin and Jean-Marie Beckers, introduction to Geophysical Fluid Dynamics [Physical and Numerical Aspects], Academic Press (2007).
[5] Roger Knobel, An Introduction to the Mathematical Theory of Waves, American Mathematical Society (2000).
[6] Katarina Jegdic, Barbara Lee Keytz and Suncica Canic, Transonic regular reflection for the nonlinear wave system, Journal of Hyperbolic Differential Equations, Vol. 3, No. 3 (2006). 443-474
[7] J. Glimm, Solutions in the large for nonlinear hyperbolic systems of equations, Comm. Pure Appl. Math. 18 (1965), pp. 697-715.
[8] B. Whitham, Linear and nonlinear waves. New York, John Wiley, 1974.