跳到主要內容

簡易檢索 / 詳目顯示

研究生: 簡如杰
Ru-Jie Jian
論文名稱: Nonlinear Balance Laws with Rotational Source Terms
指導教授: 洪盟凱
John M. Hong
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系
Department of Mathematics
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 29
中文關鍵詞: 非線性雙曲型平衡律淺水波方程黎曼問題旋轉效應
外文關鍵詞: Nonlinear hyperbolic balance laws, shallow water equations, Riemann problem, rotational effect
相關次數: 點閱:20下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本篇論文中,我們探討了在旋轉效應下的非線性雙曲型平衡律,以及討論關於一維平衡律的黎曼問題。此非線性平衡律可以被轉換成沒有源項的系統,但是通量是一個未知及時間的函數。我們利用漸進展開的方法找出此黎曼問題的逼近解。接著,我們拓展此結果去探討伴隨科氏力作用的二維淺水波方程。我們介紹一些轉換方法利用其解對稱的特性,將二維的系統轉換成一維的系統。


    In this thesis we study the nonlinear hyperbolic systems of balance laws with rotational effect. The Riemann problem for one-dimensional balance laws is considered. The nonlinear balance laws is transformed into a system without source, but the flux is a function of unknowns and time. The approximate solution of the Riemann problem is constructed by the technique of asymptotic expansion. We extend the results to the two-dimensional shallow water equations with Coriolis force. Some transformations are introduced to transform the two-dimensional system into an one-dimensional system due to the symmetry of solutions.

    1 Introduction . . . . . . . . . . . . . . . . . . . . . 1 2 Nonlinear balance laws with rotational source terms. . 3 2.1 Generalization to shallow water equations . . . . . 3 2.2 Nonlinear balance laws with rotational effect . . . 7 3 The Transformation for Shallow Water Equations. . . .12 3.1 Shallow water equations with rotational source terms. .12 3.2 The transformation for shallow water equations in polar coordinate . . . . . . . . . . . . . . . . . . . . . . .17 3.3 Rotational transformations for the shallow water equations . . . . . . . . . . . . . . . . . . . . . . . 20 Reference . . . . . . . . . . . . . . . . . . . . . . . 23

    [1] J. Smoller, Shock Waves and Reaction Di usion Equations, Springer-Verlag,New York, Berlin (1983).
    [2] Edwige Godlewski and Pierre-Arnaud Raviart, Numerical approximation of Hyperbolic Systems of Conservation Laws, Springer-Verlag, New York, Berlin, Heidelberg (1996).
    [3] C. M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, 2nd edition. Grundlehren der Mathematischen issenschaften [Fundamental Principles of Mathematical Sciences], 325. Springer-Verlag, Berlin, 2005.
    [4] Benoit Cushman-Roisin and Jean-Marie Beckers, introduction to Geophysical Fluid Dynamics [Physical and Numerical Aspects], Academic Press (2007).
    [5] Roger Knobel, An Introduction to the Mathematical Theory of Waves, American Mathematical Society (2000).
    [6] Katarina Jegdic, Barbara Lee Key tz and Suncica Canic, Transonic regular reflection for the nonlinear wave system, Journal of Hyperbolic Diff erential Equations, Vol. 3, No. 3 (2006). 443-474
    [7] J. Glimm, Solutions in the large for nonlinear hyperbolic systems of equations, Comm. Pure Appl. Math. 18 (1965), pp. 697-715.
    [8] B. Whitham, Linear and nonlinear waves. New York, John Wiley, 1974.

    QR CODE
    :::