| 研究生: |
盧奕翔 Yi-Hsiang Lu |
|---|---|
| 論文名稱: |
應用於太赫茲成像系統340-GHz反射器天線系統和85-GHz二倍頻器 Design of 340-GHz THz Reflector Antenna System Imaging Applications and 85-GHz Frequency Doubler |
| 指導教授: |
傅家相
Jia-Shiang Fu 李俊興 Chun-Hsing Li |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 85 |
| 中文關鍵詞: | 反射器 、倍頻器 、太赫茲 |
| 外文關鍵詞: | Reflector, Doubler, THz |
| 相關次數: | 點閱:14 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文提出應用於太赫茲成像系統340-GHz的反射器天線系統和應用於340-GHz無線發射機中的85-GHz二倍頻器,反射器天線系統使用共聚焦橢球反射系統方式讓路徑長度誤差減小,透過入射反射原理並用公式計算入射反射角度、解析度、路徑長度誤差等與軟體模擬太赫茲輻射路徑,反射器天線系統使用兩個拋物面反射器、一個橢球面反射器及一個平面鏡組成,在饋入端拋物面反射器的焦點上輻射太赫茲波最終反射器天線系統使太赫茲波聚焦在3 m遠,將平面鏡順時針方向旋轉5.58度和逆時針方向旋轉5.58度可掃描距離3 m遠帶測物30×30 cm^2的面積且具有0.8 cm的解析度。
應用於340-GHz無限發射機中的85-GHz二倍頻器使用TSMC 40-nm互補式金氧半導體製程實現,採用差動訊號給入電晶體在輸入端,在二倍頻器輸入端使用傳輸線將輸入阻抗由高阻抗轉到低阻抗並運用變壓器將雙端輸入轉成單端輸入且可將頻寬提高,輸出端的匹配使用變壓器,最後二倍頻器的輸出功率為-3.8 dBm,轉換增益為-9.8 dB,基頻抑制比大於33 dB,3dB頻寬為154-GHz~182-GHz(16.7%),功耗為19 mW。
A 340-GHz reflector antenna system applied to THz imaging system and an 85-GHz frequency doubler applied to the 340-GHz transmitter are proposed in this thesis.
The reflector antenna system is a confocal ellipsoidal reflection system which can reduce path length error. This system consists of two parabolic reflectors, an ellipsoidal reflector, and a plane mirror. We can calculate the incident angle, reflection angle, resolution, path length error, etc., by the law of reflection and some formulas.
When the THz radiation is at the focus of the feed parabolic reflector, the system can focus the THz wave at 3 m. When the plane mirror rotates 5.58° clockwise and rotates 5.58° counterclockwise, the system is able to scan an area 30×30 cm^2 with resolution of 0.8 cm at 3 meters away.
The 85-GHz frequency doubler for the 340-GHz transmitter is realized in TSMC 40-nm CMOS process. The input of the transistor is a differential signal. In order to shift the input impedance from high impedance to low impedance, we add transmission lines at the input of the doubler. A transformer is used to convert double-ended into single-ended input and increase the frequency bandwidth. The output matching of the doubler is designed with a transformer. The 85-GHz doubler can provide -3.8 dBm output power with a conversion gain of -9.8 dB, fundamental rejection ratio of 33 dB, and 16.7% 3dB bandwidth (154~182 GHz). In the end, total power consumption is only 19 mW.
[1] K. B. Cooper, R. J. Dengler, N. Llombart, T. Bryllert, G. Chattopadhyay, E. Schlecht, J. Gill, C. Lee, A. Skalare, I. Mehdi, and P. H. Siegel, “Penetrating 3D imaging at 4 and 25 meter range using a submillimeter-wave radar,” IEEE Trans. Microw. Theory Tech., vol. 56, no.12, pp. 2771–2778, Dec. 2008.
[2] A. Keshavarz and Z. Vafapour, “Water-based terahertz metamaterial for skin cancer detection application,” IEEE Sensors J., vol. 19, no. 4, pp. 1519–1524, Feb. 2019.
[3] B. St. Peter et al., “Development and testing of a single frequency terahertz imaging system for breast cancer detection,” IEEE J. Biomed. Health Informat., vol. 17, no. 4, pp. 785–797, Jul. 2013.
[4] N. N. Zinov’ev et al., “Identification of tooth decay using terahertz imaging and
spectroscopy,” in Proc. 27th Int. Conf. Infrared Millimeter Waves, 2002, pp. 13–14.
[5] E. Pickwell and V. P. Wallace, “Biomedical applications of terahertz technology,” J. Phys. D: Appl. Phys., vol. 39, pp. R301–R310, 2006.
[6] Z. Taylor, R. Singh, D. Bennett, P. Tewari, C. Kealey, N. Bajwa, M. Culjat, A. Stojadinovic, H. Lee, J.-P. Hubschman, E. Brown, and W. Grundfest, “THz medical imaging: In vivo hydration sensing,” IEEE Trans. Terahertz Sci. Technol., vol. 1, no. 1, pp. 201–219, Sep. 2011.
[7] K. Ajito and Y. Ueno, “THz chemical imaging for biological applications,” IEEE Trans. THz Sci. Technol., vol. 1, no. 1, pp. 293–300, Sep. 2011.
[8] S. Jia et al., “120 Gb/s multi-channel THz wireless transmission and THz receiver performance analysis,” IEEE Photon. Technol. Lett., vol. 29, no. 3, pp. 310–313, Feb. 2017.
[9] TeraView, TeraPulse 4000. [Online]. Available: https://teraview.com/terapulse/
[10] TeraSEnse, THz cameras. [Online]. Available: http://terasense.com/products/sub-thz-imaging-cameras/
[11] K. Ajito, Y. Ueno, H.-J. Song, E. Tamechika, and N. Kukutsu, “Terahertz chemical imaging of molecular networks for pharmaceutical applications,” ECS Trans., vol. 35, pp. 157–165, 2011.
[12] V. P. Wallace, R. M. Woodward, A. J. Fitzgerald, E. Pickwell, R. J. Pye, and D. D. Arnone, “Terahertz pulsed imaging of basal cell carcinoma ex vivo and in vivo,” Br. J. Dermatol. 151, 424–432 (2004).
[13] S. Gui, J. Li, and Y. Pi, ‘‘Security imaging for multi-target screening based on adaptive scene segmentation with terahertz radar,’’ IEEE Sensors J., vol. 19, no. 7, pp. 2675–2684, Apr. 2019.
[14] C. A. Balanis, Modern Antenna Handbook. New York, NY, USA: Wiley, 2008.
[15] L. Wang, Y.-Z. Xiong, B. Zhang, S.-M. Hu, and T.-G. Lim, “Millimeter-wave frequency doubler with transistor grounded-shielding structure in 0.13 μm SiGe BiCMOS technology,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 5, pp. 1304–1310, May 2011.
[16] S. A. Maas, Nonlinear microwave and RF circuits, 2nd ed. Norwood, MA, USA: Artech House, 2003.
[17] B. Cetinoneri, Y. A. Atesal, A. Fung, and G. M. Rebeiz, ‘‘W-band amplifiers with 6-dB noise figure and milliwatt-level 170–200-GHz doublers in 45-nm CMOS,’’ IEEE Trans. Microw. Theory Techn., vol. 60, no. 3, pp. 692–701, Mar. 2012.
[18] Y. Ye, B. Yu, A. Tang, B. Drouin, and Q. J. Gu, “A high efficiency E-band CMOS frequency doubler with a compensated transformer-based balun for matching enhancement,” IEEE Microw. Wireless Compon. Lett., vol. 26, no. 1, pp. 40–42, Jan. 2016.
[19] F. Golcuk, A. Fung, and G. Rebeiz, “A 0.37–0.43 THz wideband quadrupler with 160 μW peak output power in 45 nm CMOS,” in IEEE MTT-S Int. Microw. Symp. Dig., Seattle, WA, USA, Jun. 2013, pp. 1–4.
[20] P.-H. Feng and S.-I. Liu, “A current-reused injection-locked frequency multiplication/division circuit in 40-nm CMOS,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 4, pp. 1523–1532, Apr. 2013.
[21] Yu-Sheng Lin, Cheng-Han Wu, Chun-Chi Su, Yeong-Her Wang, “A Low-Power K-Band Frequency Quintupler with Current-Reused and Harmonic-Enhanced Technique”, IEEE Microw. Wireless Compon. Lett., vol. 24, pp. 701-703, 2014.
[22] K.-Y. Lin, J.-Y. Huang, and S.-C. Shin, “A K-band CMOS distributed doubler with current-reuse technique,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 5, pp. 308–310, May 2009.
[23] W. Chan and J. Long, “A 56–65 GHz injection-locked frequency tripler with quadrature outputs in 90-nm CMOS,” IEEE J. Solid-State Circuits, vol. 43, no. 12, pp. 2739–2746, Dec. 2008.
[24] H. Jia, L. Kuang, Z. Wang, and B. Chi, “A W-band injection-locked frequency doubler based on top-injected coupled resonator,” IEEE Trans. Microw. Theory Techn., vol. 64, no. 1, pp. 210–219, Jan. 2016.
[25] N.Llombart, K.B.Cooper, R.J.Dengler, T.Bryllert, and P.H.Siegel, “Confocal ellipsoidal reflector system for a mechanically scanned active terahertz imager,” IEEE Trans. Antennas Propag., vol. 58, no. 6, pp. 1834–1841, Jun. 2010.
[26] Milligan, Thomas A. Modern Antenna Design, Wiley-IEEE Press; 2nd ed., July 11, 2005.
[27] F. García-Rial, L. Úbeda-Medina, and J. Grajal, “Real-time GPU-based image processing for a 3-D THz radar,” IEEE Trans. Parallel Distrib. Syst., vol. 28, no. 10, pp. 2953–2964, Oct. 2017.
[28] C. H. Li et at., "A 1.2-V 5.2-mW 20-30 GHz wideband receiver front-end in 0.18-l1m CMOS," IEEE Trans. Microw. Theory Techn., vol. 60, no. 11, pp. 3502-3511, Nov. 2012.
[29] I. Sarkas, E. Laskin, A. Tomkins, A. Balteanu, E. Dacquay, L. Tarnow, S. P. Voinigescu, J. Hasch, P. Chevalier, and B. Sautreuil, "Silicon-based radar and imaging sensors operating above 120 GHz," in International Conference on Microwave Radar and Wireless Communications (MIKON) 2012, pp. 91-96.
[30] P. H. Tsai, Y. H. Lin, J. L. Kuo, Z. M. Tsai, and H. Wang,“Broadband balanced frequency doublers with fundamental rejection enhancement using a novel compensated marchand balun,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 5, pp. 1913–1923, May 2013.