| 研究生: |
廖仁偉 Ren-wei Liao |
|---|---|
| 論文名稱: |
蛋白質原位合成生物晶片之設計與製作 Design and fabrication of biochip for in-situ protein synthesis |
| 指導教授: |
楊宗勳
Tsung-Hsun Yang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 70 |
| 中文關鍵詞: | 胜肽合成 、蛋白質晶片 、介電質電濕式 |
| 外文關鍵詞: | peptide synthesis, EWOD, protein chip |
| 相關次數: | 點閱:16 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
傳統上,蛋白質微陣列晶片其所需檢測蛋白質的量很少且種類繁多,導致前期樣品製備非常耗時且不符經濟效應。因此,本研究提出以介電質電濕式(electrowetting on dielectric, EWOD)微流體系統為基礎,利用其可驅動單一微液滴的特性,設計並製作一蛋白質原位合成生物晶片,以少量、即時和多樣化的方式合成所需的胺基酸序列,進而應用於蛋白質晶片檢測上。
本研究於使用EWOD微流體系統進行蛋白質合成的應用上,提出三點實驗結果:1. 利用加大EWOD系統中的介電層厚度以及旋轉塗布五層鐵氟龍膜,可驅動極性微流體DMF和胺基酸合成所需溶液等。2. 利用矽晶片濕蝕刻開孔的方式於鐵氟龍膜鍍上金膜,並對金膜作表面改質使其露出OH–基,使得胺基酸序列可原位接合於金膜表面。3. 由ESCA量測結果顯示,利用本研究設計之EWOD微流體系統可接合三段亮胺酸序列以及亮胺酸和苯丙胺酸兩段胺基酸序列,而每次胺基酸接合率可達五成以上。
Currently, the microarray chips are applied in biotechnology very popularly. All the testing samples used in the microarray are required in a small amount but in great variety, especially for the assays related to proteins. In such a way, the sample preparation will be a tedious and cost-consuming work. Therefore, how to design and to implement a biochip for in-situ synthesis of proteins efficiently becomes an urgent and attractive subject contemporarily. In this work, the electro-wetting on dielectric (EWOD) micro-fluidic system by its characteristic of driving the single drop has been applied for this work. The ESCA examination reveals the synthesis rate of the peptide is higher than 50%. It has shown that the peptides are successfully synthesized by this biochip is a small amount and the peptide sequence can be programmed in the process.
[1]T. Livache, H. Bazin, P. Caillat, and A. Roget, "Electroconducting polymers for the construction of DNA or peptide arrays on silicon chips," Biosensors and Bioelectronics 13, 629-634 (1998).
[2]P. J. Obeid and T. K. Christopoulos, "Continuous-flow DNA and RNA amplification chip combined with laser-induced fluorescence detection," Analytica Chimica Acta 494, 1-9 (2003).
[3]D. J. Cahill, "Protein and antibody arrays and their medical applications," Journal of Immunological Methods 250, 81-91 (2001).
[4]D. S. Mehta, C. Y. Lee, and A. Chiou, "Multipoint parallel excitation and CCD-based imaging system for high-throughput fluorescence detection of biochip micro-arrays," Optics Communications 190, 59-68 (2001).
[5]Y. Ito and M. Nogawa, "Preparation of a protein micro-array using a photo-reactive polymer for a cell-adhesion assay," Biomaterials 24, 3021-3026 (2003).
[6]J. H. Kang and J. Park, "Development of a microplate reader compatible microfluidic device for enzyme assay," Sensors and Actuators B: Chemical 107, 980-985 (2005).
[7]Y. Huang and B. Rubinsky, "Flow-through micro-electroporation chip for high efficiency single-cell genetic manipulation," Sensors and Actuators A: Physical 104, 205-212 (2003).
[8]K. Zimmermann, T. Eiter, and F. Scheiflinger, "Consecutive analysis of bacterial PCR samples on a single electronic microarray," Journal of Microbiological Methods 55, 471-474 (2003).
[9]游佳融, 李芳仁, "功能性探討蛋白質與蛋白質的交互作用," 後基因體時代之生物技術, 51-68 (2003).
[10]Affymetrix, Gene-chip Technology, http:/www.affymetrix.com/technology/index.aff
[11]A. Manz, N. Graber, and H. M. Widmer, "Miniaturized total chemical analysis systems: A novel concept for chemical sensing," Sensors and Actuators B: Chemical 1, 244-248 (1990).
[12]M. A. Burns, B. N. Johnson, S. N. Brahmasandra, K. Handique, J. R. Webster, M. Krishnan, T. S. Sammarco, P. M. Man, D. Jones, D. Heldsinger, C. H. Mastrangelo, and D. T. Burke, "An Integrated Nanoliter DNA Analysis Device," Science 282, 484 (1998).
[13]C. M. Ho, "Fluidics-the link between micro and nano sciences and technologies," Micro Electro Mechanical Systems, 2001. MEMS 2001. The 14th IEEE International Conference, 375-384 (2001).
[14]G. T. A. Kovacs, Micromachined Transducers Sourcebook. New York: McGraw-Hill. 9, (1998).
[15]L. Yobas, M. A. Huff, F. J. Lisy, and D. M. Durand, "A novel bulk micromachined electrostatic microvalve with a curved-compliant structure applicable for a pneumatic tactile display," Journal of Microelectromechanical Systems, 10, 187-196 (2001).
[16]S. Shoji, "Microsystem Technology in Chemistry and Life Science ," H. Becker, A. Manz, Eds. 194, 164-188 (1998).
[17]S. K. Cho, H. J. Moon, and C. J. Kim, "Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits," J Microelectromech Syst 12, 70-80 (2003).
[18]M. G. Lippmann, "Relations entre les phenomenes electrique etcapillaires," Ann. Chim. Phys. 5, 494-549 (1875).
[19]H. Matsumoto and J. E. Colgate, "Preliminary investigation of micropumping based on electrical control of interfacial tension," Micro Electro Mechanical Systems, 1990. Proceedings, An Investigation of Micro Structures, Sensors, Actuators, Machines and Robots. IEEE105-110 (1990).
[20]J. Lee, H. Moon, J. Fowler, T. Schoellhammer, and C. Kim, "Electrowetting and electrowetting-on-dielectric for microscale liquid handling," Sensors and Actuators A: Physical 95, 259-268 (2002).
[21]V. Srinivasan, V. K. Pamula, and R. B. Fair, "Droplet-based microfluidic lab-on-a-chip for glucose detection," Anal. Chim. Acta 507, 145-150 (2004).
[22]P. Paik, V. K. Pamula, M. G. Pollack, and R. B. Fair, "Electrowetting-based droplet mixers for microfluidic systems," Lab on a Chip 3, 28-33 (2003).
[23]P. Paik, V. K. Pamula, and R. B. Fair, "Rapid droplet mixers for digital microfluidic systems," Lab on a Chip 3, 253-259 (2003).
[24]Y. J. Zhao and S. K. Cho, "Microparticle sampling by electrowetting-actuated droplet sweeping," Lab on a Chip 6, 137-144 (2006).
[25]S. K. Cho, Y. J. Zhao, and C. J. Kim, "Concentration and binary separation of micro particles for droplet-based digital microfluidics," Lab on a Chip 7, 490-498 (2007).
[26]Y. J. Liu, D. J. Yao, H. C. Lin, W. Y. Chang, and H. Y. Chang, "DNA ligation of ultramicro volume using an EWOD microfluidic system with coplanar electrodes," J Micromech Microengineering 18, 045017 (2008).
[27]A. R. Wheeler, H. Moon, C. A. Bird, R. R. O. Loo, C. J. Kim, J. A. Loo, and R. L. Garrell, "Digital microfluidics with in-line sample purification for proteomics analyses with MALDI-MS," Anal. Chem. 77, 534-540 (2005).
[28]H. Moon, A. R. Wheeler, R. L. Garrell, J. A. Loo, and C. J. Kim, "An integrated digital microfluidic chip for multiplexed proteomic sample preparation and analysis by MALDI-MS," Lab on a Chip 6, 1213-1219 (2006).
[29]王自豪, 林誠謙, 李弘謙, "談蛋白質摺疊與氨基酸序列," 物理雙月刊 24, 320-324 (2002).
[30]D. Chatterjee, B. Hetayothin, A. R. Wheeler, D. J. King, and R. L. Garrell, "Droplet-based microfluidics with nonaqueous solvents and solutions," Lab on a Chip 6, 199-206 (2006).
[31]C. C. Cho, R. M. Wallace, and L. A. Filessesler, "Patterning and Etching of Amorphous Teflon Films," J Electron Mater 23, 827-830 (1994).
[32]J. M. Stewart, J. D. Young, R.B. Merrifield, "Solid Phase Peptide Synthesis," Pierce Chemical Company(1984).
[33]E. Mateo-Marti, C. Briones, C. M. Pradier, and J. A. Martin-Gago, "A DNA biosensor based on peptide nucleic acids on gold surfaces," Biosens. Bioelectron. 22, 1926-1932 (2007).
[34]Shih-Kang Fan, C. Hashi, and Chang-Jin Kim, "Manipulation of multiple droplets on N/spl times/M grid by cross-reference EWOD driving scheme and pressure-contact packaging," Micro Electro Mechanical Systems, 2003. MEMS-03 Kyoto. IEEE The Sixteenth Annual International Conference, 694-697 (2003).
[35]林師勤, 楊宗勳, "介電電濕式數位微流體驅動系統之探討," 國立中央大學 光電所, (2004).
[36]丁挺洲, 楊宗勳, "以EWOD為基礎的長鏈高分子原位合成器," 國立中央大學 光電所, (2005).