| 研究生: |
王晨宇 Chen-yu Wang |
|---|---|
| 論文名稱: |
單晶矽材料電化學放電鑽孔及同軸電度之研究 The study of monocrystalline silicon electrochemical discharge drilling and coaxial electroplating. |
| 指導教授: |
曹嘉文
Chia-Wen Tsao |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 111 |
| 中文關鍵詞: | 電化學放電加工 、方錐螺旋電極 、中空孔電鍍 、單晶矽 |
| 外文關鍵詞: | Electrochemical discharge machining, square helical drill tool, Hollow hole plating layer., Monocrystalline silicon |
| 相關次數: | 點閱:20 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
現今電子元件大多邁入輕、薄、短、小的時代,而單晶矽材料因其具有相當良好的機械與化學性質故相當廣泛應用於3C、MEMS及微電子元件的製作但其硬、脆的特性很難利用傳統加工法加工,現今加工法大多使用高強酸鹼電解液,如氫氟酸、氟化氨等溶液來加工,再加上其為半導體的特性,在電鍍製程上也具有相當高的難度,目前研究大多以填充通孔或盲孔加工為主,故本研究提出了以電化學放電加工的方式加工出微孔其電解液以氫氧化鈉主,能大大降低對環境的危害,並以方錐螺旋電極的方式取代一般傳統的螺旋電極,其兩側平面能形成穩定氣膜,獲得均勻的放電火花;螺旋面能增加電解液的循環且改善其加工屑排出的方式,並配合脈衝電壓,最後我們以脈衝週期50%、電極轉速800-900rpm、加工電壓15V、電解液濃度3M的加工條件下,成功在單晶矽上加工出直徑約為210μm之單晶矽微孔,並利用此電化學放電加工機制所做出之微孔,我們更將其導入一同軸電鍍裝置,也就是在微孔製成後,更換電極極性,由電解裝置改為電鍍裝置,並將電極深入通孔後,在經過無電鍍製程,於試片上產生種晶層後實施硫酸銅電鍍製程,實驗結果證明其電極旋轉能有效的增加電鍍液的循環且其因旋轉所形成之側向力能把銅離子導入放電坑內部,而通電之電極更能增加孔內之電場效應,大大的減少電鍍時間,最後我們在加工電壓0.3V、電極轉速100-200rpm、脈衝週期50%的加工條件下,成功的製作出一均勻且平坦的中空孔鍍層。
We propose a new way that combined micro chemical electro discharge machining and plating on silicon wafer which can machining a hollow plating layer.
In tradition micro hole machining on Si wafer , there are almost using the strong acid or alkali, which is harm for the environment and the operator, but in our way, we replaced by strong acid with sodium hydroxide, it is not only we success to machining a micro hole on Si wafer but also it is more friendly to the environment and operator.
In micro electrochemical discharge machining, we propose a new electrode that we called square helical drill tool. Square helical drill tool electrode is fabricated by wire electrical discharge grinding. Shape feature of its parallel surface on both sides, can reduce the side discharge phenomenon and the helical surface to increase the electrolyte circulation, which can effectively improve machining efficiency and accuracy.
In tradition plating hole on Si wafer, there are almost to fill the thong hole or blind hole, there are no paper is about the hollow plating hole, it is harm for the solar because it's difficult to radiating and to discharge the steam because it's always been long time in the sun and rain.
In our study, we propose a new way that plating a hollow plating layer in micro hole on Si wafer, the micro hole which is after palladium activation, we put the electrode into the hole and make it roation and electrify, final we use the process condition, the working voltage 0.3V, electrode spin 100rpm and duty factor 50%, we success to machining a uniform and flat hollow plating layer in micro hole on Si wafer.
[1]C.S. Taylor, 1925. “Investigation on anode discharge in electrolysis of melted sodium chloride”, Trans. Electro-chemical Society, Vol.47, pp. 301-305.
[2]H. H. Kellog, 1950 “The interface observation of poles in water ectrolysis”,Journal of Electrochemical Society, Vol. 97, pp.133-137.
[3]Kurafuji H and Suda K ,1968. “Electrical discharge drilling of glass ”Ann. CIRP 16 415–9.
[4]Dae-Jin Kim, Yoomin Ahnb, Seoung-Hwan Lee, Yong-Kweon Kim ,2005. “Voltage pulse frequency and duty ratio effects in an electrochemical discharge microdrilling process of Pyrex glass”. International Journal of Machine Tools & Manufacture.46 1064–1067.
[5]Wüthrich R, Despont B, Maillard P and Bleuler H ,2006. “ Improving the material removal rate in spark-assisted chemical engraving (SACE) gravity-feed micro-hole drilling by tool vibration”. J. Micromech. Microeng. 16 N28-N31.
[6]Biing-Hwa Yan, Ching-Tang Yang, Fuang-Yuan Huang ,Zhe-Hong Lu ,2007. “Electrophoretic deposition grinding (EPDG) for improving the precision of microholes drilled via ECDM”. J. Micromech. Microeng. 17 376-383.
[7]Zheng Z P, Su H C, Huang F Y and Yan B H ,2007 .“The tool geometrical shape and pulse-off time of pulse voltage effects in a Pyrex glass electrochemical discharg microdrilling process”. J. Micromech. Microeng. 17 265-272
[8]Zheng Z P, Lin J K, Huang F Y and Yan B H ,2008. “Improving the
machining efficiency in electrochemical discharge machining (ECDM) microhole drilling by offset pulse voltage”. J. Micromech. Microeng. 18 025014.
[9]Han M S, Min B K and Lee S J,2009 .“Geometric improvement of electrochemical discharge micro-drilling using an ultrasonic-vibrated electrolyte ”.J. Micromech. Microeng. 19 065004.
[10]Chih-Ping Cheng, Kun-LingWu, Chao-ChuangMai ,
Cheng-KuangYang , Yu-Shan Hsu, Biing-Hwa Yan,2010. “Study of gas film quality in electrochemical discharge machining”. Journal of Machine Tools & Manufacture. 50 689–697.
[11]Chih-Ping Cheng, Kun-LingWu, Chao-Chuang Mai, Yu-Shan Hsu, Biing-Hwa Yan,2010.“Magnetic field-assisted electrochemical discharge machining”. J. Micromech. Microeng. 20 075019.
[12]Cheng-Kuang Yang , Chih-Ping Cheng , Chao-Chuang Mai, A. Cheng Wang,Jung-Chou Hung , Biing-Hwa Yan ,2010. “Effect of surface roughness of tool electrode materials in ECDM performance”. International Journal of Machine Tools & Manufacture.50 1088-1096.
[13]Cheng-Kuang Yang , Kun-LingWu, Jung-ChouHung, Shin-MinLee, Jui-CheLin , Biing-HwaYan,2011. “Enhancement of ECDM efficiency and accuracy by spherical tool electrode”.International Journal of Machine Tools & Manufacture.51 528–535.
[14]Jana D.Abou Ziki , Tohid Fatanat Didar , Rolf Wüthrich,2012. “Micro-texturing channel surfaces on glass with spark assistedchemical engraving”. International Journal of Machine Tools & Manufacture.57 66-72.
[15]Jana D. Abou Ziki , Rolf Wüthrich,2012. “Tool wear and tool thermal expansion during micro-machining by spark assisted chemical engraving”. Int J Adv Manuf Technol .61 481–486.
[16]Takeshi Kobayashi, Junichi Kawasaki, Kuniaki Mihara, Hideo Honma 2001“Via-filling using electroplating for build-up PCBs”, Electrochimica Acta, Vol.47, pp.85–89.
[17]Sung Chul Hong , Wang Gu Lee , Won Joong Kim, Jong Hyeong Kim , Jae Pil Jung, 2011 “Reduction of defects in TSV filled with Cu by high-speed 3-step PPR for 3D Si chip stacking”, Microelectronics Reliability , Vol.51, pp.2228–2235.
[18]Byung-Nam Park , Young-Soo Sohn, Sie-Young Choi, 2007 “Effects of a magnetic field on the copper metallization using the electroplating process”, Microelectronic Engineering , Vol.85, pp.308–314.
[19]Qianwen Chen, Zheyao Wang, Jian Cai, Litian Liu, 2010 “The influence of ultrasonic agitation on copper electroplating of blind-vias for SOI three-dimensional integration”, Microelectronic Engineering , Vol.87, pp.527–531.
[20]Shuhei Miura, Hideo Honmab, 2003 “Advanced copper electroplating for application of electronics”, Surface and Coatings Technology, Vol.169 –170, pp. 91–95.
[21]Wei-Ping Dow, Ming-Yao Yen, Cheng-Wei Liu, Chen-Chia Huang, 2008 “Enhancement of filling performance of a copper plating formula at low chloride concentration”, Electrochimica Acta , Vol.53, pp.3610–3619.
[22]Cheng Fang , Alain Le Corre, Dominique Yon, 2011 “Copper electroplating into deep microvias for the‘ SiP‘application”, Microelectronic Engineering, Vol.88, pp.749–753.
[23]Chien-Hung Chen, Chun-Wei Lu, Su-Mei Huangb, Wei-Ping Dow, 2011 “Effects of supporting electrolytes on copper electroplating for filling through-hole”, Electrochimica Acta, Vol.56, pp.5954–5960.
[24]R. Manu*, Sobha Jayakrishnan, 2012 “Effect of organic dye on copper metallization of high aspect ratio through hole for interconnect application”, Materials Chemistry and Physics, Vol.135, pp.425-432.
[25]楊景棠,「微電化學放電加工法應用於硼矽玻璃的精微加工及精度改善之研究」,國立中央大學,博士論文,民國96年。
[26]鄭志帄,「微電化學放電加工法應用於硼矽玻璃的精微加工技術之研究」,國立中央大學,博士論文,民國97年。
[27]楊程光,「電化學放電加工法應用於石英的精微加工研究」,國立中央大學,博士論文,民國100年。
[28]林軍屹,「應用可調變磁場輔助電化學放電加工石英之研究」,國立中央大學,碩士論文,民國101年。
[29]王祥安,「電化學微加工於精微球狀鎢電極精修製程之研究」,國立中央大學,碩士論文,民國101年。