跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳韻儀
Yun-Yi Chen
論文名稱: 三種競爭合作系統之行波解的存在性
Existence of traveling waves solutions for a three species competition-cooperation system
指導教授: 許正雄
Cheng-Hsiung Hsu
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系
Department of Mathematics
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 35
中文關鍵詞: 物種競爭模型存在性行波解
相關次數: 點閱:15下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文研究了具有一般非線性的三種競爭合作系統之行波解的存在性。該模型可以從空間平均和時間延遲的Lotka-Volterra系統中推導出來。首先,我們引用KPP方程和兩種Lotka-Volterra競爭系統的行波解的一些性質。接著,使用這個行波解,我們可以為我們的模型建構一對上下解。藉由單調迭代法,我們可以導出行波解的存在性。此外,我們舉例說明一些例子來支持我們的結果。事實上,我們稍微將[5]的結果擴展到更一般的非線性。


    In this thesis, we study the existence of traveling wave solutions for a three species competition cooperation system with general nonlinearity. The model can be derived from a spatially averaged and temporally delayed Lotka-Volterra system. First, we recall some properties of traveling wave solutions for KPP equation and two species Lotka-Volterra competition system. Using these traveling wave solutions, we can construct a pair of upper and lower solutions for our model. Then, by using the technique of monotone iteration method, we can derive the existence of the traveling wave solutions. Furthermore, we illustrate some examples to support our result. In fact, we minor extend the results of [5] to more general nonlinearity.

    摘要 ……………………………………………………………… i ABSTRACT ……………………………………………………………… ii 目錄 ……………………………………………………………… iii 1 Introduction……………………………………………… 1 2 Some known results……………………………………… 4 3 Construction of upper and lower solutions……… 6   3.1 (A1) and (A2a) hold…………………………………… 6   3.2 (A1), (A2b) and (A3) hold…………………………… 9 4 Main theorem…………………………… 19 5 Examples…………………………………………………… 24 References ……………………………………………………………… 27

    [1] P.Ashwin,M.V.Bartuccelli,T.J.BridgesandS.A.Gourley,Travellingfrontsforthe
    KPP equationwithspatio-temporaldelay, Zeitschrift furAngewandteMathematikund
    Physik , 53(2002),103-122.
    [2] H. BerestyckiandL.Nirenberg,SomeQualitativePropertiesofSolutionsofSemilinear
    Elliptic EquationsinCylindricalDomains, J. GeometryandPhys.,ed.byP.Rabinowitz,
    AcademicPress, 1990,115-164.
    [3] A. BoumenirandV.Nguyen,Perrontheoreminmonotoneiterationmethodfortraveling
    wavesindelayedreaction-di usionequations, J. Di .Eqs., 244(2008),1551-1570.
    [4] N. FeiandJ.Carr,Existenceoftravellingwaveswiththeirminimalspeedforadi using
    Lotka-Volterrasystem, NonlinearAnalysis:RealWorldApplications, 4(2003),503-524.
    [5] X.Hou andY.Li,Travelingwavesinathreespeciescompetition-cooperationsystem,
    Comunicationsonpureandappliedanalysis, 4(2017),1103-1119.
    [6] Y. Hosono,Travellingwavesforadi usiveLotka-VolterracompetitionmodelI:Singular
    Perturbations, DiscreteandContinuousDynamicalSystems-SeriesB, 3(2003),79-95.
    [7] W. Huang,ProblemonminimumwavespeedforaLotka-Volterrareaction-di usion
    competitionmodel, J. Dynam.Di erentialEquations, 22(2010),285-297.
    [8] J. I.Kanel,Onthewavefrontofacompetition-di usionsysteminpopalationdynamics,
    Nonlinear Analysis,65(2006),301-320.
    [9] J. I.KanelandL.Zhou,Existenceofwavefrontsolutionsandestimatesofwavespeedfor
    a competition-di usionsystem, NonlinearAnalysis,Theory,MethodsandApplications,
    27 (1996),579-587.
    [10] Y. Kan-on,Noteonpropagationspeedoftravellingwavesforaweaklycoupledparabolic
    system, NonlinearAnalysis, 44(2001),239-246.
    [11] Y. Kan-on,Fisherwavefrontsforthelotka-volterracompetitionmodelwithdi usion,
    NonlinearAnalysis,Theory,methodsandApplications, 28(1997),145-164.
    [12] A. W.Leung,X.HouandW.Feng,TravelingwavesolutionsforLotka-Volterrasystem
    revisited, DiscreteandContinuousDynamicalSystems-SeriesB, 15(2011),171-196.
    [13] D. Sattinger,Onthestabilityoftravelingwaves, Adv.inMath., 22(1976),312-355.
    [14] I. Volpert,V.VolpertandV.Volpert, TravelingWaveSolutionsofParabolicSystems,
    Transl.Math.Monogr.,vol140,Amer.Math.Soc.,Providence,RI.1994.
    [15] J. WuandX.Zou,Travelingwavefrontsofreaction-di usionsystemswithdelay, J.
    Dynamics andDi .Eq., 13(2001),651-687.andErratumtotravelingwavefrontsof
    reaction-di usion systemswithdelay, J. DynamicsandDi .Eq., 2(2008),531-533.

    QR CODE
    :::