跳到主要內容

簡易檢索 / 詳目顯示

研究生: 王榆茜
Yu-cian Wang
論文名稱: 電漿輔助低溫成長一維氧化銦奈米結構
Low temperature plasma-assisted growth of one-dimensional indium oxide nanostructures
指導教授: 陳一塵
I-Chen Chen
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學與工程研究所
Graduate Institute of Materials Science & Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 80
中文關鍵詞: 氧化銦一維奈米結構電漿輔助低溫成長氧化作用抗反射
外文關鍵詞: indium oxide, one-dimensional nanostructures, plasma-assisted, low-temperature growth, oxidation;, antireflection
相關次數: 點閱:14下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 一維透明導電氧化物奈米材料被認為是未來軟性電子產品的關鍵材料之一。目前氧化物奈米線若採用低溫製程製備則多有成長速率太慢的缺點;若以高溫成長方式,則必須多一道繁瑣的奈米線轉移至目標基板的步驟,因此開發低溫快速成長製程將能促進奈米線落實在實際應用層面。
    我們首次以電漿迴旋共振化學氣象沉積法製備氧化銦奈米線。以蒸鍍之銦奈米粒子作為金屬來源,藉由調整不同氧分壓獲得不同表面形貌與結晶結構的氧化銦奈米線。在此研究中觀察到在氧分壓低的成長範圍下(PO2<5E-2 mTorr),金屬銦擴散至氧化銦薄膜表面後,發生氧化反應後形成InOx作為成長奈米線的前驅物來源。而在氧分壓高的成長範圍下(2E-1<PO2<2 mTorr),氧化銦的成長轉變為銦藉由晶界擴散至較厚的多晶氧化銦薄膜表面後直接生成氧化銦奈米線。
    低溫成長且高產率的氧化銦奈米線被應用多晶與銅銦鎵硒太陽能電池之抗反射結構中。在200 oC製備不同氧化銦奈米結構的長度與直徑對於多晶太陽能電池之抗反射性質之探討;在短路電流的提升可由35.39 至 38.33 mA/cm2。而在120 oC的成長溫度製備半圓球與奈米柱之氧化銦奈米結構,於銅銦鎵硒太陽能電池之抗反射層;其太陽能電池效率可由11.10%增加至 11.46% (半圓球結構)與 11.77 %(奈米柱結構)。


    One-dimensional transparent conductive oxide nanomaterial is considered one of the key materials of flexible electronics products in future. Currently, the low temperature preparation process for oxide nanowire has the disadvantage of low growth rate; if use high temperature preparation process, it must add a tedious post-growth transfer step. Therefore, developing low temperature and rapid growth process will be able to promote nanowires for applications.
    Plasma-assisted growth of indium oxide nanowires (InO-NWs) were performed in electron cyclotron resonance (ECR) plasma with an O2-Ar system using indium nanocrystals as seed particles. In the low O2 partial pressure (PO2<5E-2 mTorr), the directly oxidation of indium which is diffusion from inner core through a thin InO layer by indium diffused from inner core to the surface of the thin InO layer can serve as the nucleation sites on the surface of thin InO layer. The morphologies and crystallinity varied with the O2 partial pressure. It high O2 partial pressure (2E-1<PO2<2 mTorr), the high InO precipitates from liquid indium may serve as the nucleation sites for InO-NWs growth. The active radicals produced in the O2-Ar plasma would activate InO-NW growth and the high throughput of InO-NWs grown at low temperature can be accessed.
    Light harvesting by InO-NWs as an antireflection layer on multi-crystalline silicon (mc-Si) and copper indium gallium selenide (CIGS) thin film solar cells has been investigated. The size-dependence of antireflection properties of InO NWs on mc-Si solar cells was studied. A considerable enhancement in short-circuit current (from 35.39 to 38.33 mA/cm2) without deterioration of other performance parameters is observed for mc-Si solar cells coated with InO NWs. The two InO-NSs grown at 120 oC were demonstrated on CIGS thin film solar cells and the efficiency can be enhance from 11.10%, 11.46 % to 11.77 % for the reference cell, those with InO-hemispheres and InO nanorods.

    摘要 I Abstract II Table of contents IV List of figures VI List of tables IX Chapter 1 Introduction 1 1.1 One-dimensional nanostructures 1 1.2 NW grown at low temperature process 1 1.3 Overview of this thesis 3 1.4 Reference 4 Chapter 2 Introduction to the indium oxide nanostructures 6 2.1 Overview of methods for fabricating one-dimensional InO nanostructures 6 2.1.1 Templated-assisted growth 6 2.1.2 VLS (vapor-liquid-solid) 7 2.1.3 VS (vapor-solid) 10 2.1.4 Chemical solution methods 11 2.2 The advantages of one-dimensional InO nanostructures at low temperatures under the plasma condition 13 2.3 Thermodynamics of indium oxidation 14 Chapter 3 Light management in solar cells 20 3.1 Antireflective coatings 20 3.1.1 Destructive interference 21 3.1.2 Reduction of reflection within the difference in the refractive index between the two media 22 3.2 Sub-wavelength structures 23 3.2.1 Texture (absorbers) 25 3.2.2 NSs of high-bandgap materials 28 3.3 Review of the submicro/nanostructured ARC on solar cells that require low temperature process (<250 oC) 31 3.5 Reference 33 Chapter 4 Experimental procedures 38 4.1 Instrumentation (ECRCVD) 38 4.2 Preparation of 1-D InO nanostructures 40 4.3 Preparation of 1-D InO nanostructures as antireflection on microcrystalline-Si and CIGS thin film solar cells 40 4.3.1 The fabrication of mc-Si solar cells 40 4.3.2 The fabrication of Cu(In,Ga)Se2 (CIGS) thin-film solar cells 41 4.4 Characterization methods 41 Chapter 5 Results and discussion 44 5.1 The evolution of morphologies of InO nanostructures with various partial pressure of oxygen 44 5.2 The evolution of morphologies of InO nanostructures at the region IV 49 5.3 The evolution of morphologies of InO-NWs at region III and IV 55 5.4 The suggested InO-NW growth mechanism 57 5.4.1 The InO-NW growth mechanism in region I 57 5.4.2 The InO-NW growth mechanism in region III 61 5.4 Reference 62 Chapter 6 InO-NWs as the antireflection layer on microcrystalline silicon and copper-indium-gallium-diselenide solar cells 65 6.1 InO-NW as antireflection on mc-Si solar cells 65 6.2 CIGS thin film solar cells 73 6.3 References 77 Chapter 7 Conclusions 80

    [1.1] R. S. Wagner and W. C. Ellis, Appl. Phys. Lett., 4, 89 (1964).
    [1.2] R. X. Yan, D. Gargas and P. D. Yang, Nat. Photonics, 3, 569 (2009).
    [1.3] X. D. Wang, J. H. Song, J. Liu, and Z. L. Wang, Science, 316, 102 (2007).
    [1.4] C. T. Huang, J. H. Song, W. F. Lee, Y. Ding, Z. Y. Gao, Y. Hao, L. J. Chen, and Z. L. Wang, J. Am. Chem. Soc., 132, 4766 (2010).
    [1.5] Z. L. Wang, Nano Today, 5, 540 (2010).
    [1.6] X. D. Wang, C. J. Summers, and Z. L. Wang, Nano Lett., 4, 423 (2004).
    [1.7] E. Garnett and P. Yang, Nano Lett., 10, 1082 (2010)
    [1.8] A. M. Morales and C. M. Lieber, Science, 279, 208 (1998).
    [1.9] J. L. Lensch-Falk, E. R. Hemesath, D. E. Perea and L. J. Lauhon, J. Mater. Chem., 19, 849 (2009).
    [1.10] S. Hofmann, C. Ducati, R. J. Neill, S. Piscanec, A. C. Ferrari, J. Geng, R. E. Dunin-Borkowski and J. Robertson, J. Appl. Phys., 94, 6005 (2003).
    [1.11] L. Yu, B. O’Donnell, P.-J. Alet, S. Conesa-Boj , F. Peiro , J. Arbiol and P. R. i Cabarrocas, Nanotechnology, 20, 225604 (2009).
    [1.12] A. M. Morales and C. M. Lieber, Science, 279, 208 (1998).
    [1.13] M. C. Mcalpine, H. Ahmad, D. Wang and J. R. Heath, Nat. Mater., 6, 379 (2007).
    [1.14] K. Kang, D. A. Kim, H.-S. Lee, C.-J. Kim, K.-E. Yang and M.-H. Jo, Adv. Mater., 20, 4684 (2008).
    [1.15] Y.-C. Wang and I-C. Chen, CrystEngComm, 16, 2937 (2014).
    [1.16] U. Cvelbar, J. Phys. D: Appl. Phys., 44, 174014 (2011).
    [2.1] C. R.Martin, Science., 266, 1961(1994).
    [2.2] C. R.Martin, Acc. Chem. Res.,28, 61(1995).
    [2.3] C. R. Martin, Chem. Mater., 8, 1739(1996).
    [2.4] C. Bae, H. Yoo, S. Kim, K. Lee, J. Kim, M. M. Sung, and H. Shin, Chem. Mater., 20, 756 (2008).
    [2.5] M. J. Zheng, L. D. Zhang, G. H. Li, X. Y. Zhang, and X. F. Wang, Appl. Phys. Lett., 79, 839 (2001).
    [2.6] S.-C. Chang and M. H. Huang, J. Phys. Chem. C., 112, 2304 (2008).
    [2.8] R. G. Treuting, S. M. Arnold, Acta Met., 5, 598 (1957).
    [2.9] R. S. Wagner, W. C. Ellis, Appl. Phys. Lett.,4, 89 (1964).
    [2.10] H. Jia, Y. Zhang, X.. Chen, J. Shu, X. Luo, Z. Zhang, and D. Yu, Appl. Phys. Lett., 82, 9 (2003)
    [2.11] Smithells Metals Reference Book, 6th ed. (Ed: E. A. Brandes), Butterworths, London 1983, pp. 12±18.
    [2.12] C. Liang, G. Meng, Y. Lei, F. Phillipp and L. Zhang, Adv. Mater., 13, 1330 (2001).
    [2.13] C. Li, D. Zhang, S. Han, X. Liu, T. Tang andC. Zhou, Adv. Mater., 15, 143 ( 2003).
    [2.14] J. Q. Hu, Y. Bando, and D. Golberg, Chem. Phys. Lett., 372, 758 (2003).
    [2.15] X. Han, et al., J. Phys. Chem. B, 109, 2733 (2005).
    [2.16] X. Y.Xue, et al. Appl. Phys. Lett., 88, 201907 (2006).
    [2.17] A. J. Chiquito, A. J. C.Lanfredi and E. R. Leite, J. Phys. D: Appl. Phys., 41, 045106 (2008).
    [2.18] H. Yumoto, T. Sako, Y. Gotoh, K. Nishiyama, T. Kaneko, Journal of Crystal Growth 203,136 (1999).
    [2.19] Y. Q. Chen, J. Jiang, B. Wang and J. G. Hou, J. Phys. D: Appl. Phys., 37 3319 (2004).
    [2.20] G. Frank, L. Brock, H.D. Bausen, J. Cryst. Growth, 36, 179 (1976).
    [2.21] X. F. Duan and C. M. Lieber, Adv. Mater., 12, 298 (2000).
    [2.22] Z. Cui, G. W. Meng, W. D. Huang, G. Z. Wang and L. D. Zhang, Mater. Res. Bull., 35, 1653 (2000).
    [2.23] W. K. Burton, N. Cabrera and F. C. Frank, Philos. Trans. R. Soc., 299, 243 (1951).
    [2.24] X. S. Peng, G. W. Meng, J. Zhang, X. F. Wang, Y. W. Wang, C. Z. Wang and L. D. Zhang, J. Mater. Chem., 12, 1602 (2002).
    [2.25] X.C. Wu, J.M. Hong, Z.J. Han, Y.R. Tao, Chem. Phys. Lett., 373 ,28 (2003).
    [2.26] J. Lao, J. Huang, D. Wang, Z. Ren, Adv. Mater., 16, 65 (2004)
    [2.27] Y.-G. Yan, Ye Zhang, H.-B. Zeng, and L.-D. Zhang, Cryst. Growth Des.,7, 940 (2007).
    [2.28] K.C. Kam, F.L. Deepak, A.K. Cheetham, C.N.R. Rao, Chem. Phys. Lett., 397, 329 (2004).
    [2.29]T.-T. Tseng, W. J. Tseng, Ceram. Int.,35, 2837 (2009).
    [2.30] J. Du, M. Yang, S. N. Cha, D. Rhen, M. Kang, and D.J.Kang, Cryst. Growth Des.,8 , 2312 (2008).
    [2.31] I. Levchenko, K. Ostrikov and S. Xu, J. Phys. D: Appl. Phys., 42, 125207 (2009).
    [2.32] U. Cvelbar , J. Phys. D: Appl. Phys., 44,174014 (2011).
    [2.33] X.-P. Shen, H.-J. Liu, X. Fan, Y. Jiang, J.-M. Hong, Z. Xu, J. Cryst. Growth., 276, 471 (2005).
    [2.34] Z.-X. Cheng, X.-B. Dong, Q.-Y. Pan, J.-C. Zhang, X,-W, Dong, Mater. Lett., 60, 3137 (2006).
    [2.35] S. Sriraman, S. Agrawal, E. S. Aydil and D. Maroudas, Nature., 418, 62 (2002).
    [2.36] N. Wan, J. Xu , G. Chen, X. Gan, S. Guo, L. Xu, K. Chen, Acta Mater., 58 3068 (2010)
    [2.37] M. Yazawa, M. Koguchi, A. Muto, K. Hiruma, Adv. Mater., 5, 577(1993).
    [2.38] R. Savu and E. Joanni, Scripta Mater., 55, 979 (2006).
    [2.39] C.-H. Chang, P. Yu, M.-H. Hsu, P.-C. Tseng, W.-L. Chang, W.-C. Sun, W.-C. Hsu, S.-H. Hsu and Y.-C. Chang, Nanotechnology, 22 ,095201(2011).
    [2.40] R. Rakesh Kumar, K. Narasimha Rao, K. Rajanna, and A.R. Phani, Mater. Res. Bull., 52,167 (2014)
    [2.41] C. B. Alcock, O. Kubaschewski, P. J. Spencer, Materials Thermochemistry (Pergamon, UK, 1993) p.130.
    [2.42] D. R. Gaskell, Introduction to the thermodynamics of materials, (Taylor & Francis, New York, 2003) p.110.
    [3.1] “Thin-Film Optical Filters”, Macmillan, 2 nd edition, 1986.
    [3.2] D. Chen, Sol. Energ. Mat. Sol. C., 68, 313 (2001).
    [3.3] H.A. Macleod, Thin-film Optical Filters, 2nd edition, McGraw-Hill, New york, 1989, p. 48.
    [3.4] J. Zhao, A. Wang, P. Altermatt, and M. A. Green, Appl. Phys. Lett., 66, 3636 (1995).
    [3.5] J. Zhao and M. A. Green, IEEE Trans. Electron Dev., 38, 1925 (1991).
    [3.6] J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S. Y. Lin, W. Liu, and J. A. Smart, Nature Photon., 1, 176 (2007).
    [3.7] S. Lien, D. Wuu, W. Yeh, and J. Liu, Sol. Energy Mater. Sol. Cells, 90, 2710 (2006).
    [3.8] A. Gombert, W. Glaubitt, K. Rose, J. Dreibholz, B. Bla¨si, A. Heinzel, D. Sporn, W. Doll, V. Wittwer, Thin Solid Films, 351, 73 (1999).
    [3.9] J.M. Bennett, L. Mattsson, Introduction to Surface Roughness and Scattering,
    Optical Society of America, Washington DC, (1989).
    [3.10] S. Chattopadhyay, Y. F. Huang, Y. J. Jen, A. Ganguly, K. H. Chen, L. C. Chen, Mat. Sci. Eng. R., 69 1 (2010).
    [3.11] Lord Rayleigh, "On the influence of obstacles arranged in rectangular order upon the properties of a medium," Philos. Mag. 34,481-502 (1892).
    [3.12] J. C. Maxwell Garnett, Philos. Trans. R. Soc., 205,237 (1906).
    [3.13] D. H. Raguin and G. M. Morris, Appl. Opt., 1993, 32, 1153-1166.
    [3.14] J. A. Rand and P. A. Basore, in Proceedings of the 22nd IEEE Photovoltaic Specialists Conference, Las Vegas, p. 192 (1991).
    [3.15] Shimura, F., 1989. Semiconductor Silicon Crystal Technology. Academic Press. Inc., San Diego, pp. 184–186.
    [3.16] H. Robbins, B.Schwartz, J. Electrochem. Soc., 106, 505 (1959).
    [3.17] D. D. Malinovska, M. S. Vassileva, N. Tzenov, M. Kamenova, Thin Solid Films, 9, 297 (1997).
    [3.18] K. Q. Peng, Y. Xu, Y. Wu, Y. J. Yan, S. T. Lee, J. Zhu, Small, 1, 1062 (2005).
    [3.19] K. Tsujino, M. Matsumura, Y. Nishimoto, Sol. Energy Mater. Sol. Cells, 90, 100 (2006). [3.20] T. Wells, M.M El-Gomati and J.Wood, J. Vac, Sci Techno. B, 15, 339 (1997).
    [3.21] G.Kumaravelu, M.M. Alkaisi, A. Bittar, ” Photovoltaic Specialists Conference, Conference Record of the Twenty-Ninth IEEE”, 258 – 261 (2002)
    [3.22] H. Robbins and B. Schwartz, J. Electrochem. Soc., 106, 505 (1959).
    [3.23] H. Jansen, H. Gardeniers, M. de Boer, M. Elwenspoek and J. Fluitman, J. Micromech. Microeng., 6, 14 (1996).
    [3.24] J. Fraunhofer, in: F. Hommel (Ed.), Gesammelte Schriften, Munich, (1887).
    [3.25] S. Walheim, E. Scha¨ffer, J. Mlynek and U. Steiner, Science, 283, 520 (1999).
    [3.26] Z. L. Wang, ACS Nanotech, 2, 1987 (2008).
    [3.27] J.C. She, Z.M. Xiao, Y.H. Yang, S.Z. Deng, J. Chen, G.W. Yang, et al. ACS Nanotech, 2, 2015 (2008).
    [3.28] C.L. Hsin, J.H. He, C.Y. Lee, W.W. Wu, P.H. Yeh, L.J. Chen, et al., Nanotech Lett., 7, 1799 (2007).
    [3.29] Y.-J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, and J. W. P. Hsu, Nano Lett., 8, 1501 (2008).
    [3.30] Y. Tian, C. Hu, Y. Xiong, B. Wan, C. Xia, X. He, and H. Liu, J. Phys. Chem. C, 114, 10265 (2010).
    [3.31] Y. Kuang, K.H.M. van der Werf, Z.S. Houweling, R.E.I. Schropp, Appl. Phys. Lett.,98 , 113111 (2011).
    [3.32] R.-E. Nowak, M. Vehse, O.Sergeev, T. Voss, M. Seyfried, K. von Maydell and C. Agert, Adv. Optical Mater., 2, 94 (2014).
    [3.33] L. Vayssieres, K. Keis, and S. Lindquist, J. Phys. Chem., 105, 3350 (2001).
    [3.34] L. E. Greene, M. Law, and J. Goldberger, Angew. Chem. Int. Ed., 42, 3031 (2003).
    [3.35] L. E. Greene, B. D. Yuhas, M. Law, D. Zitoun, and P. Yang, Inorg. Chem., 45, 7535 (2006).
    [3.36] L. E. Greene, M. Law, D. H. Tan, M. Montano, J. Goldberger, G. Somorjai, and P. Yang, Nano Lett., 5, 1231 (2005).
    [3.37] P. Aurang, O. Demircioglu, F. Es, R. Turan, and H. E. Unalan, J. Am. Ceram. Soc., 96, 1253 (2013).
    [3.38] Y.-C. Wang, B.-Y. Lin, P.-T. Liu and H.-P. D. Shieh, Opt. Express, 22, A13 (2014).
    [3.39] B.-K. Shin, T.-I. Lee, J. Xiong, C. Hwang, G. Noh, J.-H. Cho, J.-M. Myoung, Sol. Energ. Mat. Sol. C., 95, 2650 (2011).
    [3.40] J.J. Steele, M.J. Brett, J. Mater, Sci.: Mater. Electron, 18, 367 (2007).
    [3.41] J.Q. Xi, M.F. Schubert, J.K. Kim, E.F. Schubert, M. Chen, S.Y. Lin, W. Liu, J.A. Smart, Nat. Photonics., 1, 176 (2007).
    [3.42] J.-Q. Xi, J.K. Kim, E.F. Schubert, D. Ye, T.-M. Lu, S.-Y. Lin, J.S. Juneja, Opt. Lett., 31, 601 (2006).
    [3.43] J.K. Kim, S. Chhajed, M.F. Schubert, E.F. Schubert, A.J. Fischer, M.H. Crawford, J. Cho, H. Kim and C. Sone, Adv. Mater., 20, 801 (2008).
    [3.44] S. Chhajed, M. F. Schubert, J. K. Kim, and E. F. Schubert, Appl. Phys. Lett., 93, 251108 (2008).
    [3.45] Z.P. Yang, L. Ci, J.A. Bur, S.Y. Lin, and P.M. Ajayan, Nano Lett., 8, 446 (2008).
    [3.46] H.Y. Chen, H.W. Lin, C.Y. Wu, W.C. Chen, J.S. Chen, S. Gwo, Opt. Express, 16, 8106 (2008).
    [3.47] C.-H. Chang, P. Yu, M.-H. Hsu, P.-C. Tseng, W.-L. Chang, W.-C. Sun, W.-C. Hsu, S.-H. Hsu and Y.-C. Chang, Nanotechnology, 22 , 095201 (2011).
    [3.48] C.-Y. Huang, G.-C. Lin, Y.-J. Wu, T.-Y. Lin,Y.-J. Yang, and Y.-F. Chen, J. Phys. Chem. C., 115, 13083 (2011)
    [3.49] L.L. Kazmerski, O. Jamjoum, P.J. Ireland, R.A. Mickelsen, W.S. Chen, J. Vac. Sci. Technol., 21, 486 (1982).
    [3.50] S. Kijima, T. Nakada, Appl. Phys. Express, 1, 0750021 (2008).
    [3.51] D.-H. Cho, Y.-D. Chung, K.-S. Lee, N.-M. Park, K.-H. Kim, H.-W. Choi, J. Kim, Thin Solid Films, 520, 2115 (2012)
    [3.52] P. B. Clapham and M. C. Hutley, Nature, 3, 281 (1973).
    [3.53] J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan and Y. Cui, Nano Lett., 9, 279 (2008).
    [3.54] E. Garnett and P.Yang, ,Nano Lett., 10, 1082 (2010).
    [3.55] M. D. Kelzenberg et al., Nature Mater., 9, 239 (2010).
    [3.56] J. Oh, H-C. Yuan and H. M. Branz, Nature Nanotech., 7, 743 (2012).
    [3.57] S.A. Boden, D.M. Bagnall, Appl. Phys. Lett., 93, 133108 (2008).
    [3.58] M. Taguchi et al., “Improvement of the Conversion Efficiency of Polycrystalline Silicon Thin Film Solar Cell”, Proc. Fifth PVSEC, 1990, pp. 689-692.
    [3.59] T. Saga, NPG Asia Mater., 2, 96 (2010).
    [3.60] S.D. Wolf and M. Kondo, Appl, Phys, Lett., 91, 112109 (2007).
    [3.61] S. Gatz, T. Dullweber, V. Mertens, F. Einsele, R. Brendel, Sol.Energ. Mat. Sol. C., 96, 180 (2012).
    [3.62] D. Zhang, A. Tavakoliyaraki, Y. Wu, R. A. C. M. M. van Swaaij, M. Zeman, Energy Procedia, 8, 207 (2011).
    [5.1] D. E. Rosner and H. Donald Allendorf, J. ElecSrochem. Soc., 114, 305-314 (1967).
    [5.2] P. K. Song, H. Akao, M. Kamei, Y. Shigesato and I. Yasui, Jpn. J. Appl. Phys., 38, 5224 (1999).
    [.3] Z. R. Dai, Z. W. Pan and Z. L. Wang, Adv. Funct. Mater., 13, 9 (2003).
    [5.4] S. N. Mohammad, Nano Lett., 8, 1532 (2008).
    [5.5] R. S. Wagner and W. C. Ellis, AppI. Phys. Lett., 1964, 4, 89.
    [5.6] E. I. Givargizov, J. Cryst. Growth, 1965, 31, 20–30.
    [5.7] L. Yuan, Y. Wang, R. Mema, G. Zhou, Acta Mater., 59, 2491 (2011).
    [5.8] L. Yuan, Y. Wang, R. Cai, Q. Jiang, J. Wang, B. Li, A. Sharma, G. Zhou, Materials Mat Aci Eng B-Solid, 177, 327 (2012).
    [5.9] C.-Y. Hsua, K.-H. Changa, J.-A. Gongb, J. Tirénc, Y.-Y. Li and A. Sakoda, RSC Adv., 5, 103884 (2015).
    [5.10] A. L. Beaudry, R. T. Tucker, J. M. LaForge, M. T. Taschuk, M. J. Brett, Nanotechnology, 23, 105608 (2012).
    [5.11] F. Geiger,1 C. A. Busse, 1 and R. I. Loehrke, Int. J. Thermophys., 8, 425 (1987).
    [5.12] L. A. Marqués, M. J. Caturla, T. D. de la Rubia, G. H. Gilmer, J Appl Phys., 80, 6160 (1996).
    [5.13] I. Barin, “Thermochemical data of pure substances”, Wiley, New York, p716–717 (1989).
    [5.14] G. Beamson, D. Briggs, “High Resolution XPS of Organic Polymers: The Scienta ESCA300 Database”, Wiley, Chichester, (1992).
    [5.15] J. S. Kim, P. K. H. Ho, D. S. Thomas, R. H. Friend, F. Cacialli, G.-W. Bao, S. F. Y. Li, Chem. Phys. Lett., 315, 307 (1999).
    [5.16] T. Ishida, H. Kobayashi, Y. Nakato, J. Appl. Phys., 73, 4344 (1993).
    [5.17] C. Donley, D. Dunphy, D. Paine, C. Carter, K. Nebesny, P. Lee, D. Alloway, and N. R. Armstrong, Langmuir, 18, 450 (2002).
    [5.18] A. T. Fromhold, Phys. Lett., 29, 157 (1969).
    [5.19] N. Cabrera, N.F. Mott, Rep. Progr. Phys., 12, 163 (1948).
    [5.20] H. H. Uhlig, Acta Matall., 4, 541 (1956).
    [5.21] Rideal and Wansbrough-Jones, Roy. Soc. Proc.,123A, 202 (1929)
    [5.22] H. Tostmann, E. DiMasi, P. S. Pershan, B. M. Ocko, O. G. Shpyrko and O. G. Shpyrko, Phys. Rev. B, 59, 783 (1999)
    [5.23] Mukesh. Kumar, V. N.Singh, B. R. Mehta and J. P Singh, J. Phys. Chem. C, 116, 5450 (2012).
    [5.24] Y. Wu and P. Yang, J. Am. Chem. Soc., 123, 3165 (2001).
    [5.25] L. Yuan, Y. Wang, R. Mema, G. Zhou, Acta Mater., 59, 2491 (2011).
    [5.26] A. T. Fromhold, J. Phys. Chem. Solids, 49, 1159 (1988).
    [5.26] G. P. Wirtz and H. P. Takiar, J. Am. Ceram. Soc., 64, 748 (1981).
    [6.1] S. Chattopadhyay, Y.F. Huang, Y.J. Jend, A. Ganguly, K.H. Chen, L.C. Chen, Mat Sci Eng R. 69, 1 (2010).
    [6.2] P.K. Singh, R. Kumar, M . Lal, S.N. Singh, B.K. Das, Sol Energ Mat Sol C. 70, 103 (2001).
    [6.3] P. Panek, M. Lipiński, J. Dutkiewicz, J Mater Sci. 40, 1459 (2005).
    [6.4] M.A. Green, S. Jiqun, E.M. Keller, S.R. Weham, IEEE T Electron Dev. 31, 679 (1984).
    [6.5] Z. Chen, J. Salami, A. Rohatgi, IEEE T Electron Dev. 40, 1161 (1993).
    [6.6] S.A. Boden, D.M. Bagnall, Appl Phys Lett. 93, 133108 (2008).
    [6.7] P. Campbell, J Opt Soc Am B. 10, 2410 (1993).
    [6.8] E. Yablonovitch, G.D.Cody, IEEE T Electron Dev. 29, 300 (1982).
    [6.9] J. Liu, B. Liu, Z. Shen, J. Liu, S. Zhong, S. Liu, C. Li, Y. Xia, Sol Energy. 86, 3004 (2002).
    [6.10] J. Oh, H.C. Yuan, H.M. Branz, Nat Nanotechnol. 7, 743 (2012).
    [6.11] P. Aurang, O. Demircioglu, F. Es, R. Turan, H.E. Unalan, J A Ceram Soc. 96, 1253 (2013).
    [6.12] C.Y. Huang, G.C. Lin, Y.J. Wu, T.Y. Lin, Y.J. Yang, Y.F. Chen, J Phys Chem C. 115, 5 (2011).
    [6.13] C.H. Chang, P.C. Tseng, W.L. Chang, W.C. Sun, W.C. Hsu, S.H. Hsu, Y.C. Chang, Nanotechnology 22, 13083 (2011).
    [6.14] S. Wilking, S. Ebert, A. Herguth, and G. Hahn, J. Appl. Phys. 114, 194512 (2013).
    [6.15] P.K. Song, H. Akao, M. Kamei, Y. Shigesato, I. Yasu, Jpn J Appl Phys. 38, 5224 (1999).
    [6.16] H. Dong, W. Yang, W. Yin, D. Chen, Mater Chem Phys. 107, 122 (2008).
    [6.17] A.L. Beaudry, R.T. Tucker, J.M. LaForge, M.T. Taschuk, M. J. Brett. Nanotechnology 23, 105608 (2012).
    [6.18] C.J. Chen, W.L. Xu, M.Y. Chern, Adv Mater. 19, 3012 (2007).
    [6.19] L.A. Marqués, M.J. Caturla, T.D. de la Rubia, G.H. Gilmer, J Appl Phys. 80, 6160 (1996).
    [6.20] Y.-J. Lee, D.S. Ruby, D.W. Peters, B.B. McKenzie, and J.W.P. Hsu, Nano Lett. 8, 1501 (2008).
    [6.21] S. Jeong, M.T. McDowell, and Y. Cui, ACS Nano 5, 5800, (2011).
    [6.22] D. Redfield, Solar Cells 3, 27 (1981).
    [6.23] M.J. Minot, J. Opt. Soc. Am. 66, 515 (1976).
    [6.24] D. Poitras and J. A. Dobrowolski, Appl. Opt. 43, 1286 (2004) .
    [6.25] F. Urbach, Phys. Rev. 92, 1324 (1953).
    [6.26] H. K. Müller, Phys. Status Solidi B. 27, 723 (1968).
    [6.27] M. Girtan and G. Folcher, Surf Coat Tech. 172,242 (2003).
    [6.28] S.-Y. Kuo, M.-Y. Hsieh, H.-V. Han, F.-I Lai, T.-Y. Chuang, P. Yu, C.-C. Lin and H.-C. Kuo, Opt. Express, 22, 2860 (2014).
    [6.29] D. Li, S. Han, A. Li, Y. Wang, Y. Shan, F. Huang, Mater. Chem. Phys., 165, 97 (2015).
    [6.30] J.W. Leem, D.H. Joo and J.S. Yu, Sol. Energ. Mat. Sol. C., 95, 2221 (2011).
    [6.31] M.-Y. Hsieh, S.-Y. Kuo, H.-V. Han, J.-F. Yang, Y.-K. Liao, F.-I Lai and H.-C. Kuo, Nanoscale, 5, 3841 (2013).
    [6.32] C. Tsai, K. Huang, M. Jeng, Mater. Sci. Semicon. Proc., 16, 1599 (2013).
    [6.33] M. Gloeckler, J.R. Sites, W.K. Metzger, J. Appl. Phys., 98, 113704 (2005).
    [6.34] S.W. Zeng, X.M. Cai, B.P. Zhang, IEEE J. Quantum Elect., 46 783 (2010).
    [6.35] M. Minot, J. Opt. Soc. Am., 67, 1046 (1977).
    [6.36] W. H. Southwell, J. Opt. Soc. Am. A, 8, 549 (1991).
    [6.37] D. H. Raguin and G. M. Morris, Appl. Opt., 32, 1154 (1993)

    QR CODE
    :::