跳到主要內容

簡易檢索 / 詳目顯示

研究生: 周冠羽
K-Y Chou
論文名稱: 砷化銦鎵的電性研究與平面型PIN光偵測器的製作
Electrical properties of InGaAs and the fabrication of AlInGaAs/InGaAs/InP laterial PIN photodetectors
指導教授: 紀國鐘
Gou-Chung Chi
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
畢業學年度: 88
語文別: 中文
論文頁數: 83
中文關鍵詞: 離子佈植閉管擴散砷化銦鎵平面型光偵測器
相關次數: 點閱:8下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • 材料的特性方面,經過X-ray繞射(XRD),光激光譜(PL),及霍爾測試(Hall measurement)等量測獲得磊晶層之電特性與光特性如下:在300K時,晶格不匹配(Lattice mismatch)為332.4ppm,能隙為0.751eV,載子型別為n型,載子濃度為2 1015 /cm3,載子遷移率為3400cm2/v s。
    在材料電性的研究方面。對於以離子佈植法摻雜Si+活化形成n+型半導體方面,我們已有不錯的實驗成果,將載子濃度由2 1015 /cm3提高到1 1018 /cm3以上。在摻雜Zn+轉變電性形成p+型半導體的方面,由Hall量測的結果,我們的實驗結果顯示,在面摻雜量為1 1014/cm2以上,以及8000C以上的活化溫度,比較容易成功將雜質活化。
    在平面型PIN光偵測器的製作上,我們初步的嘗試也得到令人期待的結果。在逆偏壓10伏特時的暗電流,以擴散方式製作的元件有較小的暗電流,暗電流密度為1.12 10-3(A/cm2);而以離子佈植方式所製作的元件有較大的暗電流,暗電流密度為4.2 10-2(A/cm2)。而元件漏電流大小也與元件面積成正相關。


    摘要……………………………………………….……….Ⅰ 目錄…………………………………………………..……Ⅲ 圖目…………………………………………………..……Ⅴ 表目……………………………………………………..…Ⅶ 第一章 導論……………………………………………1 第二章 實驗原理…………………………….………...7 2-1 雜質的摻雜………………………………….………...7 2-2 離子佈植的基本理論…………………………………8 2-2.1 離子佈植的分佈與範圍 2-2.2 脫序 2-2.3 退火 2-2.4 通道效應 2-3 基本擴散理論…………………………….………….12 2-4 霍爾量測………………………………….………….14 2-5 PIN光偵測器的工作原理……………………………15 2-5.1量子效率與吸收係數 2-5.2暗電流機制 第三章 實驗裝置與實驗方法………………….……..27 3-1砷化銦鎵的離子佈植實驗…………………….…..…27 3-1.1 霍爾量測實驗裝置 3-1.2 試片處理步驟 3-2 以離子佈植法製作平面型PIN光偵測器…….……30 3-2.1 離子佈植系統 3-2.2 元件製程步驟 3-3以閉管擴散法製作平面型PIN光偵測器…………..35 3-3.1 閉管擴散裝置 3-3.2 元件製程步驟 第四章 實驗結果與討論……………………………...52 4-1 材料特性的量測…………………………….…...……52 4-1.1 x-ray繞射量測 4-1.2 光激發光光譜量測 4-1.3電性量測 4-2材料離子佈植摻雜後的電性變化…………………….53 4-2.1以離子佈植方式摻雜Si 4-2.2以離子佈植方式摻雜Zn 4-3 以離子佈植法製作的平面型PIN光偵測器….………55 4-3.1霍爾量測 4-3.2 ECV量測 4-3.3 I-V特性量測 4-4 以閉管擴散法製作的平面型PIN光偵測器………...58 4-4.1 霍爾量測 4-4.2 I-V特性量測 第五章 結論與未來工作……………………………….76 5-1 結論……………………………………………………76 5-2 未來工作………………………………………………77 參考文獻……………………………………………………82

    參考文獻
    1. Ock Ky Kim, Bulusu V. Dutt., R. J. McCoy, John R. Zuber, "A Low Dark-Current, Planar InGaAs p-i-n Photodiode With A Quaternary InGaAsP Cap Layer", IEEE J. Quan. Electron., QE-21, No. 2, 1985, p. 138.
    2. S. R. Forrest, I. Camlibel, O. K. Kim, H. J. Stocken, J. R. Zuber, "Low Dark-Current, High Efficiency Planar In0.53Ga0.47As/InP P-I-N Photodiodes", IEEE Trans. Electron. Device Lett., Vol. 1, ED2-2, No. 11, 1981, p. 283.
    3. K. Tabatabaie-Alavi, A. N. M. M. Choudhury, N. J. Slater, C. G. Fonstad, "Ion Implantation of Be in In0.53Ga0.47As"< Appl. Phys. Lett. Vol. 40, No. 6, 1982, p. 517.
    4. J. C. Campbell, AT&T Bell Lab. Technical Memorendum (unpublished).
    5. S. M. Sze, "Semiconductor Devices Physics and Technology", Ch. 3
    6. Jasprit Singh, "Semiconductor Optoelectronics Physics and Technology", Ch. 6 Semiconductor junction theory, p. 286.
    7. G. Dearnaley, J. H. Freeman, R. S. Nelson, Stephen, "Ion-Implantation", Ch. 5 Applications to semiconductors, p. 561.
    8. S. R. Forrest, M. DiDomenico, Jr., R. G. Smith, H. J. Stocker, "Evidence For Tunneling in Reverse-Biased III-V Photodetector Diodes", Appl. Phys. Lett., Vol. 36, No. 7, 1 April, 1980, p. 580.
    9. S. R. Forrest, R. F. Leheny, R. E. Nahory, M. A. Pollack, "In0.53Ga0.47As Photodiode With Dark Current Limited by Generation-Recombination And tunneling", Appl. Phys. Lett., Vol. 37, No. 3, 1 August, 1981, p. 217.
    10. Badih El-Kareh, "Fundamentals of Semiconductor Processing Technologies", Ch. 6 Ion-Implantation, p. 353.
    11. S, M, Sze, "VLSI Technology", Ch. 7 Ion-Implantation, p. 327.
    12. J. Lindhard, M. Scharff, H. Schiott, "Rang Concepts And Heavy Ion Ranges", Mat. Fys. Med. Dan. Vid Selsk, Vol. 33, No. 14, 1963, p. 1.
    13. M. A. Shahid, M. Anjum, B. J. Sealy, "Annealing of Ion-Implanted Ga0.47In0.53As", Radiation Effects Letters, Vol. 86, 1984, p. 87.
    14. Mulpuri V. Rao, "Rapid isothermal annealing of high- and low-energy ion-implanted InP and In0.53Ga0.47As", IEEE Trans. Electron. Device Lett., Vol. 39, No. 1, 1992, p. 160.
    15. 何文章(Ho Wen Jeng),"以液相磊晶法在磷化銦基板上成長砷化銦鎵p-i-n感光二極體",國立交通大學電子研究所碩士論文,民國八十年七月.
    16. E. KuPhal, "Phase Diagrams of InGaAsP, InGaAs and InP Lattice To (100) InP", J. of Crystal Growth, Vol. 67,1984, p. 441.
    17. V. Swaminathan, A. T. Macrander, "Material Aspects of GaAs And InP Based Structures", Ch. 3, X-ray structural characterization, p. 181.
    18. V. Swaminathan, A. T. Macrander, "Material Aspects of GaAs And InP Based Structures", Ch. 1, Introduction, p. 1.
    19. K.tabatabaie-Alavi,A.N.M.M.Choudhury,N.J.Slater,andC.G.Fonstad "Ion implantation of Be in In0.53Ga0.47As"Appl.Phys.lett, March,1982
    20. Sandip Tiwari, Jeremy Burroughes, Mark S. Milshtein, Michael A. Tischler, and Steven I. Wright, "Lateral p-i-n Photodetectors With 18 GHz Bandwidth at 1.3μm Wavelength And Small Bias Voltages", IEEE, 1991.
    21. J.F.ZIEGLER "Handbook of Ion Implantation Technology"
    22. S. M. Sze, "Semiconductor Devices Physics and Technology", Ch. 10
    23. Diter K.Schroder, "Semiconductor Material and Device Characterization" Ch.5
    24. S. M. Sze, "Semiconductor Devices Physics and Technology", Ch. 7
    25. G.C.Chi "An e-beam evaporated borosilicate glass thin film as an encapsulant for annealing Be-implant InP" Materials Chemistry and Physics 39 (1994) 69-71
    26. 洪秀瑩,"砷化鋁銦鎵/砷化銦鎵平面雪崩型光偵測器之設計及製作",國立中央大學物理研究所碩士論文,民國八十六年六月.
    27. S. M. Sze, "Physics of semiconductor devices", Ch. 13
    28. 周哲賢,"超晶格式雪崩型感光二極體之研製與撞擊游離係數之量測",國立中央大學物理研究所碩士論文,民國八十八年六月.

    QR CODE
    :::