跳到主要內容

簡易檢索 / 詳目顯示

研究生: 張翠容
Tsui-Jung Chang
論文名稱: 整合Sentinel-1與TerraSAR-X 永久散射體雷達差干涉法以監測地表變形
Integrating Sentinel-1 and TerraSAR-X PSInSAR to Monitor Land Deformation
指導教授: 曾國欣
口試委員:
學位類別: 碩士
Master
系所名稱: 太空及遙測研究中心 - 遙測科技碩士學位學程
Master of Science Program in Remote Sensing Science and Technology
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 93
中文關鍵詞: 永久散射體雷達差分干涉法地層下陷
外文關鍵詞: PSInSAR, Land Subsidence
相關次數: 點閱:12下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 合成孔徑雷達干涉法 (InSAR) 已被廣泛應用到檢測地表變形,如:地震、地層下陷和火山活動。永久散射體雷達差分干涉法 (PSInSAR) 是多時序合成孔徑雷達干涉法去測量來自地面特徵物的穩定反射相位,例如:建築物、橋樑或裸岩。然而,每個合成孔徑雷達 (SAR) 都有其特定的雷達波長、空間解析度、時間解析度和影像模式。此外,散射和穿透特性取決於與目標物間的交互作用。因此,本研究提出了一個全新概念來整合 Sentinel-1 和 TerraSAR-X PSInSAR 結果,並結合它們各自在陸地觀測中的優勢。此研究進行了兩個案例來探討所提出方法在不同情況下的可行性:雲林縣因抽取地下水而造成的地層下陷以及臺北盆地由自然以及人為活動所造成的地表活動。在研究結果中:雲林地區在 2014 年至 2016 年中,累積下陷量達到視衛星方向(Line-Of-Sight)上的-51 mm,而與 GNSS 站相比的均方根誤差(RMSE)為 6.2 mm。第二件案例分析顯示可以觀察到時間序列上沿山腳斷層的移動還有輕微下陷的臺北盆地。與 GNSS資料驗證可得到,相關係數(R)為 0.86,且RMSE為 6 mm。因此,我們可以得出下列結論:藉由兩種不同的雷達影像可以提高時間解析度以及利用兩者雷達影像的優點可以得到更佳的觀察地表變形的能力,從而修正了S1 PSInSAR高估的累積變形量且符合現地資料的趨勢,並保留了更完善的地表特徵。


    Interferometric Synthetic Aperture Radar (InSAR) has been widely used to detect surface deformation such as earthquake, subsidence, and volcanic activities. Persistent Scatterer InSAR (PSInSAR) is one of the multi-temporal InSAR techniques to measure stable phase reflected by ground features, such as buildings, bridges, or other bright targets in radar wavelength. However, each SAR mission has its specified wavelength, resolution, revisit, and acquisition mode. Moreover, the scattering and penetration characteristics depend on the interaction with the target. Hence, this study proposes a novel concept to merge Sentinel-1 and TerraSAR-X PSInSAR results to leverage their individual advantages in land observations. Two experiments are conducted to explore the performance of the proposed method under different scenarios: Yunlin County with land subsidence and Taipei Basin with both natural and anthropogenic deformation. In our results, Yunlin area has a maximum cumulative subsidence reaching -51 mm in 2014 ~ 2016 in Line-Of-Sight (LOS) direction, while the root-mean-square error (RMSE) as compared against GNSS stations is 6.2 mm. Also, in Taipei Basin we observe a movement along the Shanchiao fault in the time series and slight settlement in the central of Taipei Basin. The correlation is 0.86 and RMSE is 6 mm in GNSS validation. We conclude that the mid-resolution SAR images calibrated by some temporally interleaved high-resolution images have better capability to observe land deformation that revising the overestimated S1 PSInSAR result, which shows a good agreement with on-site data, and to preserve detailed patterns.

    摘要 i Abstract ii Table of Contents iii List of Figures v List of Tables x Chapter 1 Introduction 1 1.1 Surface Deformation in Taiwan 1 1.2 Current Observation Scheme 5 1.3 Objective of This Study 8 1.4 Outlines 11 Chapter 2 Literature Review 12 Chapter 3 Interferometric Synthetic Aperture Radar 16 3.1 Principle of Synthetic Aperture Radar 16 3.1.1 Geometric Distortions and Limitations 19 3.1.2 Wavelength of Recent SAR Missions 20 3.2 Interferometric SAR 22 3.3 Differential Interferometric SAR 24 3.4 Persistent Scatterer InSAR 26 Chapter 4 Data and Method 31 4.1 Study Area 31 4.2 Dataset 34 4.2.1 SAR Images 34 4.2.2 GNSS Network in Taiwan 36 4.3 Proposed Method 38 4.3.1 DInSAR Processing 39 4.3.2 PSInSAR Processing 40 4.3.3 PSInSAR Calibration Procedure 41 4.3.4 GPS Validation 45 Chapter 5 Experiment Result 46 5.1 Yunlin Case Study 46 5.2 Taipei Basin Case Study 55 Chapter 6 Discussion 64 6.1 Yunlin Case Study 64 6.2 Taipei Basin Case Study 70 Chapter 7 Conclusion 75 Reference 76

    Abidin, H. Z., Andreas, H., Djaja, R., Darmawan, D., & Gamal, M. (2008). Land subsidence characteristics of Jakarta between 1997 and 2005, as estimated using GPS surveys. Gps Solutions, 12(1), 23-32.
    Bamler, R., & Hartl, P. (1998). Synthetic aperture radar interferometry. Inverse problems, 14(4), R1.
    Bamler, R., & Just, D. (1993, August). Phase statistics and decorrelation in SAR interferograms. In Proceedings of IGARSS'93-IEEE International Geoscience and Remote Sensing Symposium (pp. 980-984). IEEE.
    Chang, C. P., Yen, J. Y., Hooper, A., Chou, F. M., Chen, Y. A., Hou, C. S., ... & Lin, M. S. (2010). Monitoring of Surface Deformation in Northern Taiwan Using DInSAR and PSInSAR Techniques. Terrestrial, Atmospheric & Oceanic Sciences, 21(3).
    Chen, C. T., Hu, J. C., Lu, C. Y., Lee, J. C., & Chan, Y. C. (2007). Thirty-year land elevation change from subsidence to uplift following the termination of groundwater pumping and its geological implications in the Metropolitan Taipei Basin, Northern Taiwan. Engineering Geology, 95(1-2), 30-47.
    Chen, X., Sun, Q., & Hu, J. (2018). Generation of complete SAR geometric distortion maps based on DEM and neighbor gradient algorithm. Applied Sciences, 8(11), 2206.
    De Zan, F., & Guarnieri, A. M. (2006). TOPSAR: Terrain observation by progressive scans. IEEE Transactions on Geoscience and Remote Sensing, 44(9), 2352-2360.
    Delgado Blasco, J. M., Foumelis, M., Stewart, C., & Hooper, A. (2019). Measuring urban subsidence in the Rome metropolitan area (Italy) with Sentinel-1 SNAP-StaMPS persistent scatterer interferometry. Remote Sensing, 11(2), 129.
    Elachi, C., 1987. Introduction to the physics and techniques of remote sensing, John Wiley & Sons Inc.
    ESA (2021). Sentinel-1 SAR User Guide Introduction. Retrieved from https://sentinel.esa.int/web/sentinel/user-guides/sentinel-1-sar.
    Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley, S., ... & Alsdorf, D. (2007). The shuttle radar topography mission. Reviews of geophysics, 45(2).
    Ferretti, A., Prati, C., & Rocca, F. (2001). Permanent scatterers in SAR interferometry. IEEE Transactions on geoscience and remote sensing, 39(1), 8-20.
    Franceschetti, G., & Lanari, R. (1999). Synthetic aperture radar processing. CRC press.
    Galloway, D. L., & Burbey, T. J. (2011). Regional land subsidence accompanying groundwater extraction. Hydrogeology Journal, 19(8), 1459-1486.
    Galloway, D. L., Jones, D. R., & Ingebritsen, S. E. (Eds.). (1999). Land subsidence in the United States (Vol. 1182). US Geological Survey.
    Hanssen, R. F. (2001). Radar interferometry: data interpretation and error analysis (Vol. 2). Springer Science & Business Media.
    Hooper, A., & Zebker, H. A. (2007). Phase unwrapping in three dimensions with application to InSAR time series. JOSA A, 24(9), 2737-2747.
    Hooper, A., Bekaert, D., Spaans, K., & Arıkan, M. (2012). Recent advances in SAR interferometry time series analysis for measuring crustal deformation. Tectonophysics, 514, 1-13.
    Hooper, A., Segall, P., & Zebker, H. (2007). Persistent scatterer interferometric synthetic aperture radar for crustal deformation analysis, with application to Volcán Alcedo, Galápagos. Journal of Geophysical Research: Solid Earth, 112(B7).
    Hooper, A., Spaans, K., Bekaert, D., Cuenca, M. C., Arıkan, M., & Oyen, A. (2010). StaMPS/MTI manual. Delft Institute of Earth Observation and Space Systems Delft University of Technology, Kluyverweg, 1, 2629.
    Hooper, A., Zebker, H., Segall, P., & Kampes, B. (2004). A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers. Geophysical research letters, 31(23).
    Hung, W. C., Hwang, C., Chang, C. P., Yen, J. Y., Liu, C. H., & Yang, W. H. (2010). Monitoring severe aquifer-system compaction and land subsidence in Taiwan using multiple sensors: Yunlin, the southern Choushui River Alluvial Fan. Environmental Earth Sciences, 59(7), 1535-1548.
    Hung, W. C., Hwang, C., Chen, Y. A., Chang, C. P., Yen, J. Y., Hooper, A., & Yang, C. Y. (2011). Surface deformation from persistent scatterers SAR interferometry and fusion with leveling data: A case study over the Choushui River Alluvial Fan, Taiwan. Remote Sensing of Environment, 115(4), 957-967.
    Hwang, C., Hung, W. C., & Liu, C. H. (2008). Results of geodetic and geotechnical monitoring of subsidence for Taiwan High Speed Rail operation. Natural Hazards, 47(1), 1-16.
    Liu, G., Jia, H., Zhang, R., Zhang, H., Jia, H., Yu, B., & Sang, M. (2010). Exploration of subsidence estimation by persistent scatterer InSAR on time series of high resolution TerraSAR-X images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 4(1), 159-170.
    Massonnet, D., Briole, P., & Arnaud, A. (1995). Deflation of Mount Etna monitored by spaceborne radar interferometry. Nature, 375(6532), 567-570.
    Meyer, F. (2019). Spaceborne Synthetic Aperture Radar: Principles, data access, and basic processing techniques. Synthetic Aperture Radar (SAR) Handbook: Comprehensive Methodologies for Forest Monitoring and Biomass Estimation, 21-64.
    Moreira, A., Prats-Iraola, P., Younis, M., Krieger, G., Hajnsek, I., & Papathanassiou, K. P. (2013). A tutorial on synthetic aperture radar. IEEE Geoscience and remote sensing magazine, 1(1), 6-43.
    Nikolaidis, R. (2002). Observation of geodetic and seismic deformation with the Global Positioning System. University of California, San Diego.
    Osmanoğlu, B., Sunar, F., Wdowinski, S., & Cabral-Cano, E. (2016). Time series analysis of InSAR data: Methods and trends. ISPRS Journal of Photogrammetry and Remote Sensing, 115, 90-102.
    Pepe, A., & Calò, F. (2017). A review of interferometric synthetic aperture RADAR (InSAR) multi-track approaches for the retrieval of Earth’s surface displacements. Applied Sciences, 7(12), 1264.
    Qin, X., Liao, M., Yang, M., & Zhang, L. (2017). Monitoring structure health of urban bridges with advanced multi-temporal InSAR analysis. Annals of GIS, 23(4), 293-302.
    Rosen, P. A., Hensley, S., Joughin, I. R., Li, F. K., Madsen, S. N., Rodriguez, E., & Goldstein, R. M. (2000). Synthetic aperture radar interferometry. Proceedings of the IEEE, 88(3), 333-382.
    Sato, H. P., Abe, K., & Ootaki, O. (2003). GPS-measured land subsidence in Ojiya city, Niigata prefecture, Japan. Engineering Geology, 67(3-4), 379-390.
    Scheiber, R., & Moreira, A. (2000). Coregistration of interferometric SAR images using spectral diversity. IEEE Transactions on Geoscience and Remote Sensing, 38(5), 2179-2191.
    Schumann, G. J. P., & Moller, D. K. (2015). Microwave remote sensing of flood inundation. Physics and Chemistry of the Earth, Parts A/B/C, 83, 84-95.
    Seno, T. (1977). The instantaneous rotation vector of the Philippine Sea plate relative to the Eurasian plate. Tectonophysics, 42(2-4), 209-226.
    Shyu, J. B. H., Sieh, K., Chen, Y. G., & Liu, C. S. (2005). Neotectonic architecture of Taiwan and its implications for future large earthquakes. Journal of Geophysical Research: Solid Earth, 110(B8).
    Sibson, R. (1981). A brief description of natural neighbour interpolation. Interpreting multivariate data.
    Taiwan region hydrogeological zoning characteristics, Central Geological Survey, 1997.
    Tily, R., & Brace, C. J. (2006). A study of natural neighbour interpolation and its application to automotive engine test data. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 220(7), 1003-1017.
    Werninghaus, R., & Buckreuss, S. (2009). The TerraSAR-X mission and system design. IEEE Transactions on Geoscience and Remote Sensing, 48(2), 606-614.
    Yagüe-Martínez, N., Prats-Iraola, P., Gonzalez, F. R., Brcic, R., Shau, R., Geudtner, D., ... & Bamler, R. (2016). Interferometric processing of Sentinel-1 TOPS data. IEEE Transactions on Geoscience and Remote Sensing, 54(4), 2220-2234.
    Yang, Y. J., Hwang, C., Hung, W. C., Fuhrmann, T., Chen, Y. A., & Wei, S. H. (2019). Surface deformation from Sentinel-1A InSAR: relation to seasonal groundwater extraction and rainfall in Central Taiwan. Remote Sensing, 11(23), 2817.
    Yu, S. B., Chen, H. Y., & Kuo, L. C. (1997). Velocity field of GPS stations in the Taiwan area. Tectonophysics, 274(1-3), 41-59.
    Zebker, H. A., Rosen, P. A., Goldstein, R. M., Gabriel, A., & Werner, C. L. (1994). On the derivation of coseismic displacement fields using differential radar interferometry: The Landers earthquake. Journal of Geophysical Research: Solid Earth, 99(B10), 19617-19634.
    簡.,Liu-Xuan.(2020).結合永久散射體雷達差分干涉法與全球衛星定位系統計算地表三維變形.

    QR CODE
    :::