跳到主要內容

簡易檢索 / 詳目顯示

研究生: 簡偉丞
Wei-cheng Chien
論文名稱: 適應性車道偏離警示與夜間前車碰撞警示系統
Adaptive Lane Departure Warning and Nighttime Forward Collision Warning System
指導教授: 曾定章
Din-chang Tseng
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 資訊工程學系
Department of Computer Science & Information Engineering
畢業學年度: 99
語文別: 中文
論文頁數: 81
中文關鍵詞: 車道偏離警示前車碰撞警示
外文關鍵詞: Forward Collision Warning, Lane Departure Warning
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著交通工具使用的頻繁與流行,交通事故也日益增多。交通事故的發生,有許多情況是駕駛的分心而造成車輛偏離車道或未與前車保持適當距離而造成的。各國的交通事故統計數據顯示,前後追撞的交通事故所佔的比例相當的高;因此,我們在本研究中提出適應性車道偏離警示與夜間前車碰撞警示系統。
    在適應性車道偏離警示系統中,我們計算水平第二差分影像;根據我們所定義的車道線模型,搜尋車道線,再根據車道線計算目前車輛是否偏離。而當車道線偵測失敗時,則依賴我們提出的適應性車道線偵測學習模組重新搜尋車道線,並根據連續偵測失敗的次數來調整搜尋的範圍。以這樣的方式運作,就能盡量減少運算資源來快速回復系統正常運作。最後我們將系統實作於嵌入式系統中;根據嵌入式系統的運算能力,以純整數運算實作我們的系統,讓我們的系統能在ARM 9 500 MHz的嵌入式系統上以每秒12張畫面即時運作。
    在夜間前車碰撞警示系統中,我們根據車尾燈在影像中所呈現的特徵來偵測車尾燈。再以車尾燈的垂直距離、車尾燈水平距離、車尾燈移動軌跡,與兩車尾燈相關性等四項特徵配對,獲得的一組車尾燈對即視為一部車輛;最後再依據車尾燈對的距離變化量,計算與前車碰撞時間 (Time to collision, TTC),提供駕駛人警示。在個人電腦上,運作效能可達每秒30張畫面,平均偵測正確率大約可達94.30%。


    Currently, land vehicles are the most popular transportation devices in those few years, the amount of vehicles is rapidly increased, and then results in much more traffic accidents. The main factor of traffic accidents is the distraction of drivers, such as lane departure, road departure, rear collision, intersection collision, etc. Accroding to the reports of traffic accidents in many countries, the lane departure and rear collision are two important accident types; thus in this thesis we proposed an adaptive lane departure warning system and a forward collision warning system for night driving.
    In the adaptive lane departure warning system, we first generate a horizontal second-difference map. Then, we search the lane marks based on a pre-defined lane model in the map, Third, we judge the lane departure accroding to the detected lane marks. If the system fail to detect lane marks, the proposed adaptive learning module is launched to set proper range of line parameters for following frames. With such a learning strategy, the system will look for lane marks in the following frames as quickly as possible. In this study, we have implemented this system on a embedded system, and improved the system execution performance. The system performs an accepted frame rate of 12 frames per second with ARM 9 500MHz CPU.
    In nighttime forward collision warning system, we detect the tails of preceding vehicles. Then, we pair the lights using the features of: the horizontal distance, the vertical heights, the trajectory, and correlation of a pair of lights. Finally, we estimate the time to collision (TTC) of the verified light pair. The system was experimented on a personal computer and performed a high execution rate of 30 frames per second. The detection rate of preceding vehicles is also highly at 94.30% in average.

    摘要 ii Abstract iii 誌謝 v 目錄 vi 圖目錄 viii 表目錄 xi 第一章 緒論 1 1.1研究動機 1 1.2系統架構 3 1.3論文架構 11 第二章 相關研究 12 2.1車道線偵測 12 2.2車輛偵測 15 2.2.1日間車輛偵測 16 2.2.2夜間車輛偵測 17 第三章 適應性車道偏離警示系統 22 3.1 影像擷取 22 3.2 車道偏離偵測模組 22 3.2.1 車道線偵測 23 3.2.2 車道偏離偵測 25 3.3 適應性學習機制 26 3.4 嵌入式系統效能改進 29 第四章 夜間前車碰撞警示系統 31 4.1 車尾燈偵測 31 4.1.1 偵測過曝區塊 33 4.1.2 過濾車尾燈顏色點 34 4.1.3 產生車尾燈區塊 36 4.2車尾燈追蹤 38 4.3車尾燈配對 39 4.4計算前車碰撞時間 43 第五章 實驗結果 45 5.1 實驗環境 45 5.2 實驗結果 47 5.2.1 適應性車道偏離警示系統 47 5.2.2 夜間前車碰撞警示系統 52 5.3 討論 57 第六章 結論與未來展望 61 參考文獻 63

    [1] Ahmad, M. B. and T. S. Choi, "Local threshold and boolean function based edge detection," IEEE Trans. on Consumer Electronics, vol.45, no.3, pp.674-679, 1999.
    [2] Alcantarilla, P. F., L. M. Bergasa, P. Jiménez, M. A. Sotelo, I. Parra, D. Fernández, and S. S. Mayoral, "Night time vehicle detection for driving assistance lightbeam controller," in Proc. of IEEE Intelligent Vehicles Symp., Eindhoven, Netherlands, Jun.4-6, 2008, pp.291-296.
    [3] American National Standard Institution, Photographic Exposure Guide, American National Standard for Photography, Tech. Rep. ANSI PH2.7-1986, 1986.
    [4] Armingol, J. M., A. de la Escalera, C. Hilario, J. M. Collado, J. P. Carrasco, M. J. Flores, J. M. Pastor, and F. J. Rodríguez, "IVVI: Intelligent vehicle based on visual information," Robotics and Autonomous Systems, vol.55, no.12, pp.904-916, 2007.
    [5] Bertozzi, M., A. Broggi, A. Fascioli, and S. Nichele, "Stereo vision-based vehicle detection," in Proc. of IEEE Intelligent Vehicles Symp., Dearborn, MI, Oct.3-5, 2000, pp.39-44.
    [6] Betke, M., E. Haritaoglu, and L. S. Davis, "Real-time multiple vehicle detection and tracking from a moving vehicle," Machine Vision and Applications, vol.12, no.2, pp.69-83, 2000.
    [7] Broggi, A., P. Cerri, and P. C. Antonello, "Multi-resolution vehicle detection using artificial vision," in Proc. of IEEE Intelligent Vehicles Symp., Parma, Italy, Jun.14-17, 2004, pp.310-314.
    [8] Chen, K.-W., Monocular Computer Vision Technigues for Road and Situation Detection, Master Thesis, Computer Science and Information Engineering, National Central University, Chung-li, Taoyuan, Taiwan, 2005.
    [9] Chen, Y. L., Y. H. Chen, C. J. Chen, and B. F. Wu, "Nighttime vehicle detection for driver assistance and autonomous vehicles," in Proc. of 18th Int. Conf. on Pattern Recognition, Hong Kong, China, Aug.20-24, 2006, pp.687-690.
    [10] Chern, M.-Y. and P.-C. Hou, "The lane recognition and vehicle detection at night for a camera-assisted car on highway," in Proc. of IEEE Int. Conf. on Robotics and Automation, Taipei, Taiwan, Sep.14-19, 2003, pp.2110-2115.
    [11] Chern, M.-Y., "Development of a vehicle vision system for vehicle/lane detection on highway," in Proc. of 18th IPPR Conf. on Computer Vision, Graphics and Image Processing, Taipei, Taiwan, Aug.21-23, 2005, pp.803-810.
    [12] Chu, J., L. Ji, L. Guo, Libibing, and R. Wang, "Study on method of detecting preceding vehicle based on monocular camera," in Proc. of IEEE Intelligent Vehicles Symp., Parma, Italy, Jun.14-17, 2004, pp.750-755.
    [13] Clady, X., F. Collange, F. Jurie, and P. Martinet, "Cars detection and tracking with a vision sensor," in Proc. of IEEE Intelligent Vehicles Symp., Columbus, OH, Jun.9-11, 2003, pp.593-598.
    [14] Collado, J. M., C. Hilario, A. De La Escalera, and J. M. Armingol, "Model based vehicle detection for intelligent vehicles," in Proc. of IEEE Intelligent Vehicles Symp., Parma, Italy, Jun.14-17, 2004, pp.572-577.
    [15] Du, Y. and N. P. Papanikolopoulos, "Real-time vehicle following through a novel symmetry-based approach," in Proc. of IEEE Int. Conf. on Robotics and Automation, Albuquerque, NM, Apr.20-25, 1997, pp.3160-3165.
    [16] Europe Road Safety Observatory, Traffic Safety Basic Facts 2007-Motorways, 2007.
    [17] Gao, D., W. Li, J. Duan, and B. Zheng, "A practical method of road detection for intelligent vehicle," in Proc. of IEEE Int Conf. on Automation and Logistics, Shenyang, China, Aug.5-7, 2009, pp.980-985.
    [18] Görmer, S., D. Müller, S. Hold, M. Meuter, and A. Kummert, "Vehicle recognition and TTC estimation at night based on spotlight pairing," in Proc. of 12th Int. IEEE Conf. on Intelligent Transportation Systems, St. Louis, MO, Oct.3-7, 2009, pp.196-201.
    [19] Hsiao, P.-Y., C.-W. Yeh, S.-S. Huang, and L.-C. Fu, "A portable vision-based real-time lane departure warning system: Day and night," IEEE Trans. on Vehicular Technology, vol.58, no.4, pp.2089-2094, 2009.
    [20] Hsieh, W. C., L. C. Fu, and S. S. Huang, "Vision based obstacle warning system for on-road driving," in Proc. of IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, Las Vegas, NV, Oct.27-31, 2003, pp.3668-3673.
    [21] Huang, S.-S., C.-J. Chen, P.-Y. Hsiao, and L.-C. Fu, "On-board vision system for lane recognition and front-vehicle detection to enhance driver''s awareness," in Proc. of IEEE Int. Conf. on Robotics and Automation, New Orleans, LA, Apr.26-May.1, 2004, pp.2456-2461.
    [22] Huang, Y.-C. and D.-C. Tseng, "A vision-based vehicle to vehicle detection and tracking system," in Proc. of 18th IPPR Conf. on Computer Vision, Graphics and Image Processing, Taipei, Taiwan, Aug.21-23, 2005, pp.866-873.
    [23] Jin, L.-S., B.-Y. Gu, R.-B. Wang, L. Guo, Y.-B. Zhao, and L.-H. Li, "Preceding vehicle detection based on multi-characteristics fusion," in Proc. of IEEE Int. Conf. on Vehicular Electronics and Safety, Shanghai, China, Dec.13-15, 2006, pp.356-360.
    [24] Kalman, R. E., "A new approach to linear filtering and prediction problems," Trans. of ASME, vol.82, pp.35-45, 1960.
    [25] Lewis, J. P., Fast Normalized Cross-Correlation, Industrial Light and Magic, http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.21.6062&rep=rep1&type=pdf, 1995.
    [26] O''Malley, R., M. Glavin, and E. Jones, "Vehicle detection at night based on tail-light detection," in Proc. of 1st Int. ICST Symp. on Vehicular Computing Systems, Trinity College, Dublin, Jul.22, 2008.
    [27] O''Malley, R., E. Jones, and M. Glavin, "Rear-lamp vehicle detection and tracking in low-exposure color video for night conditions," IEEE Trans. on Intelligent Transportation Systems, vol.11, no.2, pp.453-462, 2010.
    [28] Schamm, T., C. Von Carlowitz, and J. Marius Zöllner, "On-road vehicle detection during dusk and at night," in Proc. of IEEE Intelligent Vehicles Symp., La Jolla, CA, Jun.21-24, 2010, pp.418-423.
    [29] Schwarzinger, M., T. Zielke, D. Noll, M. Brauckmann, and W. Vonseelen, "Vision-based car-following detection tracking and identification," in Proc. of IEEE Intelligent Vehicles Symp., Detroit, MI, Jun29-Jul.1, 1992, pp.24-29.
    [30] Science Daily, Avoiding Rear-end Collisions, http://www.sciencedaily.com/videos/2008/0501-avoiding_rearend_collisions.htm, 2008.
    [31] Shyr, B.-Y., Daytime Detection of Leading and Neighboring Vehicles on Highway: A Major Capability for the Driver Assistant Vision System, Master thesis, Electrical Engineering, National Chung Cheng Univ., Chia-yi, Taiwan, 2003.
    [32] Tseng, D.-C., Monocular Computer Vision Aided Road Vehicle Driving for Safety, U.S. Patent No. 6765480, 2004.
    [33] Vorndran, I., Unfallgeschehen im Straenverkehr 2006, Statistisches Bundesamt, http://www.destatis.de/jetspeed/portal/cms/Sites/destatis/Internet/DE/Content/Publikationen/Querschnittsveroeffentlichungen/WirtschaftStatistik/Verkehr/Unfallgeschehenstrassenverkehr2006,property=file.pdf, 2007.
    [34] Wang, C.-C., Driver Assistance System for Lane Departure Prevention and Collision Avoidance with Night Vision, Master Thesis, Computer Science and Information Engineering, National Taiwan University, Taipei, Taiwan, 2004.
    [35] Wang, C.-C., C.-J. Chen, Y.-M. Chan, L.-C. Fu, and P.-Y. Hsiao, "Lane detection and vehicle recognition for driver assistance system at daytime and nighttime," Image and Recognition Magazine, vol.12, no.2, pp.4-17, 2006.
    [36] Zielke, T., M. Brauckmann, and W. Vonseelen, "Intensity and edge-based symmetry detection with an application to car-following," CVGIP: Image Understanding, vol.58, no.2, pp.177-190, 1993.

    QR CODE
    :::