跳到主要內容

簡易檢索 / 詳目顯示

研究生: 胡庭愷
Ting-Kai Hu
論文名稱: 一種應用於光資料中心的拓樸重設方案
A topology reconfiguration scheme for optical datacenter network
指導教授: 張貴雲
Guey-Yun Chang
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 資訊工程學系
Department of Computer Science & Information Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 47
中文關鍵詞: 資料中心光通訊拓樸
外文關鍵詞: Data center network, optical communication, topology
相關次數: 點閱:18下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於近年來雲端運算的到來出現許多應用,這些應用常常需要結合多台伺服器來完成搜尋或是平行運算,導致資料中心內部的流量由 80% 伺服器對資料中心外部的流量變成70% 資料中心內部的伺服器間的流量。導致資料中心往光通訊發展,以往所提出的光資料中心架構通常有一個高成本的控制器來收集流量資訊並改變拓樸達到最大的吞吐量。我們提出一個以正方體(cube) 為基礎的網路拓樸,稱為CB,此拓樸會規律的改變且不需要控制器來收集流量資訊並改變拓樸就會有高吞吐量。並且使用Matlab 這套軟體來評估我們與其他方法的效能。


    Due to the development of cloud computing, there are many applications for searching, parallel computing, etc, which requires a large number of servers and results in high traffic volume between servers. To satisfy the huge
    traffic volume, previous approaches usually require a high-cost controller to collect the traffic demand from top of racks, and using traffic demand to determine
    a new topology with highest throughput. In this paper, we propose the cube-baesd topology called CB. CB can change regularly and doesn’t need a high cost controller to collect traffic information. According to the simulation
    results, CB has outperforms in terms of throughput compared to previous approaches.

    中文摘要i Abstract ii 致謝iii Contents iv List of Figures vi List of Tables vii 1 Introduction 1 2 Related work 5 2.1 Electrical packet switch vs. Optical circuit switch . . . . . . . . . . . . . 5 2.2 Three type of optical datacenter Architecture . . . . . . . . . . . . . . . 6 2.2.1 Hybrid switch architecture . . . . . . . . . . . . . . . . . . . . . 6 2.2.2 Optical switch architecture . . . . . . . . . . . . . . . . . . . . . 7 2.2.3 Wireless architecture . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2.4 Summary previous proposals . . . . . . . . . . . . . . . . . . . . 8 2.3 Research goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3 A topology reconfiguration scheme for optical datacenter network 14 3.1 The overall optical datacenter architecture . . . . . . . . . . . . . . . . . 14 3.2 Topology reconfiguration mechanism and connection patterns . . . . . . 15 iv 3.2.1 Topology reconfiguration mechanism . . . . . . . . . . . . . . . 15 3.2.2 Connection patterns . . . . . . . . . . . . . . . . . . . . . . . . 16 3.3 The overall transimission mechanism . . . . . . . . . . . . . . . . . . . 16 3.3.1 2 hop and 3 hop transmission . . . . . . . . . . . . . . . . . . . . 17 3.3.2 Transmission . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.3.3 Transmission strategy . . . . . . . . . . . . . . . . . . . . . . . 18 4 Evaluation 26 4.1 Simulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 4.2 Traffic model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 4.3 Throughput analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 5 Conclusion and Future Work 31 Bibliography 32

    [1] Cisco, “Cisco global cloud index: Forecast and methodology, 2016–2021 white paper.”
    https://www.cisco.com/c/en/us/solutions/collateral/
    service-provider/global-cloud-index-gci/white-paperc11-
    738085.html.
    [2] G. E. Keiser, “A review of wdm technology and applications,” Optical Fiber Technology,
    vol. 5, no. 1, pp. 3–39, 1999.
    [3] Facebook, “Introducing data center fabric, the next-generation facebook data center
    network.” https://code.facebook.com/posts/360346274145943/
    introducing-data-center-fabric-the-next-generationfacebook-
    data-center-network/.
    [4] N. Farrington, G. Porter, S. Radhakrishnan, H. H. Bazzaz, V. Subramanya, Y. Fainman,
    G. Papen, and A. Vahdat, “Helios: a hybrid electrical/optical switch architecture
    for modular data centers,” in ACM SIGCOMM, vol. 40, pp. 339–350, 2010.
    [5] G. Wang, D. G. Andersen, M. Kaminsky, K. Papagiannaki, T. Ng, M. Kozuch, and
    M. Ryan, “C-through: Part-time optics in data centers,” in ACM SIGCOMM, vol. 40,
    pp. 327–338, 2010.
    [6] H. Liu, F. Lu, A. Forencich, R. Kapoor, M. Tewari, G. M. Voelker, G. Papen, A. C.
    Snoeren, and G. Porter, “Circuit switching under the radar with reactor.,” in NSDI,
    vol. 14, pp. 1–15, 2014.
    32
    [7] G. Porter, R. Strong, N. Farrington, A. Forencich, P. Chen-Sun, T. Rosing, Y. Fainman,
    G. Papen, and A. Vahdat, “Integrating microsecond circuit switching into the
    data center,” in ACM SIGCOMM, vol. 43, pp. 447–458.
    [8] X. Zhou, Z. Zhang, Y. Zhu, Y. Li, S. Kumar, A. Vahdat, B. Y. Zhao, and H. Zheng,
    “Mirror mirror on the ceiling: Flexible wireless links for data centers,” in ACM SIGCOMM,
    vol. 42, pp. 443–454, 2012.
    [9] D. Halperin, S. Kandula, J. Padhye, P. Bahl, and D. Wetherall, “Augmenting data
    center networks with multi-gigabit wireless links,” in ACM SIGCOMM, vol. 41,
    pp. 38–49, 2011.
    [10] N. Hamedazimi, Z. Qazi, H. Gupta, V. Sekar, S. R. Das, J. P. Longtin, H. Shah, and
    A. Tanwer, “Firefly: A reconfigurable wireless data center fabric using free-space
    optics,” in ACM SIGCOMM, vol. 44, pp. 319–330, 2014.
    [11] W. M. Mellette and J. E. Ford, “Scaling limits of mems beam-steering switches for
    data center networks,” in Journal of Lightwave Technology, vol. 33, pp. 3308–3318,
    2015.
    [12] W. M. Mellette, R. McGuinness, A. Roy, A. Forencich, G. Papen, A. C. Snoeren,
    and G. Porter, “Rotornet: A scalable, low-complexity, optical datacenter network,”
    in ACM SIGCOMM, pp. 267–280, 2017.
    [13] Cisco, “Cisco nexus 9236c switch.” https://www.cisco.com/c/en/us/
    products/switches/nexus-9236c-switch/index.html.
    [14] J. Edmonds, “Paths, trees, and flowers,” in Classic Papers in Combinatorics,
    pp. 361–379, 2009.
    [15] A. Singla, A. Singh, K. Ramachandran, L. Xu, and Y. Zhang, “Proteus: a topology
    malleable data center network,” in Proceedings of the 9th ACM SIGCOMM Workshop
    on Hot Topics in Networks, p. 8, 2010.
    33
    [16] K. Chen, A. Singla, A. Singh, K. Ramachandran, L. Xu, Y. Zhang, X. Wen, and
    Y. Chen, “Osa: An optical switching architecture for data center networks with
    unprecedented flexibility,” in IEEE/ ACM Transactions on Networking, vol. 22,
    pp. 498–511, 2014.
    [17] S. B. Yoo, Y. Yin, and K. Wen, “Intra and inter datacenter networking: The role
    of optical packet switching and flexible bandwidth optical networking,” in Optical
    Network Design and Modeling (ONDM), pp. 1–6, 2012.
    [18] H. Wang and K. Bergman, “A bidirectional 2×2 photonic network building-block
    for high-performance data centers,” in Optical Fiber Communication Conference
    and Exposition (OFC/NFOEC), 2011.
    [19] M. Ghobadi, R. Mahajan, A. Phanishayee, N. Devanur, J. Kulkarni, G. Ranade, P.-A.
    Blanche, H. Rastegarfar, M. Glick, and D. Kilper, “Projector: Agile reconfigurable
    data center interconnect,” in ACM SIGCOMM, pp. 216–229, 2016.
    [20] S. Kandula, J. Padhye, and P. Bahl, “Flyways to de-congest data center networks,”
    in ACM Hotnets, 2009.
    [21] K. optron, “Switchable mirror.” http://kentoptronics.com/
    switchable.html.
    [22] T. M. Inc., “Matlab.” https://www.mathworks.com/products/
    matlab.html.

    QR CODE
    :::