| 研究生: |
黃南雄 Nan-Syong Huang |
|---|---|
| 論文名稱: |
人臉偵測與追蹤及人眼偵測 Face Detection and Tracking with Pupil Orientation Estimation |
| 指導教授: |
鄭旭詠
Cheng Hsu-Yung |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 資訊工程學系 Department of Computer Science & Information Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 58 |
| 中文關鍵詞: | 人臉 、追蹤 、瞳孔 、偵測 |
| 外文關鍵詞: | Pupils |
| 相關次數: | 點閱:15 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
人臉辨識中,如何正確取得人臉位置是一個重要的研究,因此我
們提出結合追蹤與偵測的方法來找到需要辨識的區域,進一步,辨識
的部分又可以分為人的身分辨識以及人的行為辨識,後者我們又可以
分析眼睛注視的方向,可見光的瞳孔偵測上應用上相當廣泛,像是行
車是否有專心注視前方或是分析行人注視廣告看板中的位置等等,先
行的方法已經被提出了許多,有些是分析梯度、有些是分析曲率等
等,但是這些狀況很容易受到不是眼睛區域的影響,甚至有可能找到
頭髮的區域,因此,我們提出了一個的方法來改進結果,這個方法包
含了膚色偵測,主要是避免找到瞳孔位置是落在膚色的區域中,而且
這個方法結合了哈爾特徵級聯分類器以及臉部對齊的資訊,透過兩者
資訊來找到接近眼睛位置,再根據人的雙眼聯動的條件,對於位移以
及角度上進一步的修正,這部分實驗在BioID 臉部影像資料庫以及自
己建立AIPR LAB 人臉影片資料庫。更進一步,我們比較了我們以及
其他的方法,在結果上有著顯著的正確率以及穩定性。
Face-locating in videos is an important issue in face recognition.
Therefore, we propose a solution which combines tracking and detecting
methods in order to find and recognize the face regions. In face recognition,
there are many researches about face perception such as emotion,
gaze estimation, identity analysis,etc. Our research we focus on the gaze
estimation in the visible light due to the visible cameras are universal
devices everywhere. This technology can be applied on many different
situations. For example, to alert the driver while he/she is not driving
carefully; to show Ads where the passengers are looking at on the lcd ad
board. Those are widely used applications nowadays. Some researches
have been proposed for that such as calculate by gradients or by curvature,
etc. However, sometimes it is possible to detect non-eye regions
by those methods. The non-eye regions might be hair or eyebrow. To
avoid those problems we propose a algorithm to correct the location of
eyes. The algorithm includes skin detections, haar cascade classifier,
face alignment and a correction based on conjunctive eye movements.
We test our result on BioID image database and our video samples. Finally,
we compare our proposed algorithm to other methods, and ours
has better performance with high accuracy and robustness.
[1] Timm and Barth. Accurate eye centre localisation by means of
gradients. In Proceedings of the Int. Conference on Computer
Theory and Applications (VISAPP), volume 1, pages 125-130,
Algarve, Portugal, 2011. INSTICC.
http://www.inb.uni-luebeck.de/fileadmin/files/PUBPDFS/
TiBa11b.pdf
[2] Basilio, Jorge Alberto Marcial and Torres, Gualberto Aguilar
and Pérez, Gabriel Sánchez and Medina, L. Karina Toscano and
Meana, Héctor M. Pérez. Explicit Image Detection using YCbCr
Space Color Model as Skin Detection. Proceedings of the
2011 American Conference on Applied Mathematics and the 5th
WSEAS International Conference on Computer Engineering and
Applications,123-128, World Scientific and Engineering Academy
and Society (WSEAS), 2011.
http://dl.acm.org/citation.cfm?id=1959666.1959689
[3] Ian Fasel and Bret Fortenberry and Javier Movellan. A generative
framework for real time object detection and classification. Computer
Vision and Image Understanding,182-210, 2005.
http://dl.acm.org/citation.cfm?id=1959666.1959689
[4] Ren, Shaoqing and Cao, Xudong and Wei, Yichen and Sun, Jian.
Face Alignment at 3000 FPS via Regressing Local Binary Features.
in CVPR , IEEE Computer Society, , pp. 1685-1692
http://dblp.uni-trier.de/db/conf/cvpr/cvpr2014.html#
RenCW014
[5] Turk, Matthew and Pentland, Alex. Eigenfaces for Recognition. J.
Cognitive Neuroscience, 1991.
42
http://dx.doi.org/10.1162/jocn.1991.3.1.71
[6] Viola, P. and Jones, M. Rapid object detection using a boosted
cascade of simple features. in Computer Vision and Pattern
Recognition, 2001. CVPR 2001. Proceedings of the 2001 IEEE
Computer Society Conference on, pp. I-511-I-518 vol.1
http://ieeexplore.ieee.org/xpl/abstractMetrics.jsp?tp=
&arnumber=990517
[7] Zhang, Lun and Chu, Rufeng and Xiang, Shiming and Liao, Shengcai
and Li, Stan Z. Face Detection Based on Multi-block LBP Representation.
Proceedings of the 2007 International Conference on
Advances in Biometrics, p11 - 18, 2007, Springer-Verlag.
http://dl.acm.org/citation.cfm?id=2391659.2391662
[8] Lin, Yu-Tzu and Lin, Ruei-Yan and Lin, Yu-Chihand Lee, Greg
C. Real-time eye-gaze estimation using a low-resolution webcam.
Multimedia Tools and Applications, p543 - 568, 2013.
http://dx.doi.org/10.1007/s11042-012-1202-1
[9] Kalal, Zdenek and Mikolajczyk, Krystian and Matas, Jiri. Tracking-
Learning-Detection. IEEE Trans. Pattern Anal. Mach. Intell,
p1409 - 1422, 2012, IEEE Computer Society.
http://dx.doi.org/10.1109/TPAMI.2011.239
[10] Gurcan, Ilker and Temizel, Alptekin. Heterogeneous CPU–GPU
tracking–learning–detection (H-TLD) for real-time object tracking.
Journal of Real-Time Image Processing, p1 - 15, 2015.
http://dx.doi.org/10.1007/s11554-015-0538-y
[11] Juránek, Roman; Zemcík, Pavel; Herout, Adam. Implementing the
Local Binary Patterns with SIMD Instructions of CPU WSCG
2010: Poster Proceedings: 18th International Conference in Central
Europe on Computer Graphics, Visualization and Computer Vision
in co-operation with EUROGRAPHICS, p. 39-42.
https://otik.uk.zcu.cz/handle/11025/1111
[12] Valenti, R. and Gevers, T. Accurate Eye Center Location
Through Invariant Isocentric Patterns IEEE Transactions
43
on Pattern Analysis and Machine Intelligence, vol 34, p1785
- 1798, 2012. https://ivi.fnwi.uva.nl/isis/publications/
2012/ValentiTPAMI2012
[13] Jesorsky, O., Kirchberg, K., and Frischholz, R. Robust face detection
using the Hausdorff distance In Proceedings of the 3rd AVBPA,
LNCS, pages 90–95, Halmstad, Sweden. Springer, 2001. http://
dl.acm.org/citation.cfm?id=646073.677460