| 研究生: |
王俊凱 Wang-Chun-Kai |
|---|---|
| 論文名稱: |
不同水砂比之顆粒流對於渠道回淤及沖積扇堆積型態之影響 |
| 指導教授: | 周憲德 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 74 |
| 中文關鍵詞: | 沖積扇平面堆積 、回淤現象 、水砂比 |
| 外文關鍵詞: | backfilling, avulsion |
| 相關次數: | 點閱:14 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究探討不同水砂比對於渠道回淤與沖積扇堆積形態之影響,實驗使
用的顆粒為粗砂,在不同砂量、不同濃度的水砂比進行實驗,藉此觀察沖
積扇的平面堆積形態變化與歷程以及渠道回淤現象;實驗觀測顆粒由儲存
槽經由渠道堆積於平台上之變化,乾砂顆粒在此坡度渠道之顆粒性質,以
及顆粒摩擦力與邊壁效應對渠道回淤之結果;改變不同的水砂比,對於顆
粒之堆積或回淤造成什麼影響,討論顆粒之向源回淤現象,平面堆積時扇
面之發展情況,在水砂比 n=2.5 之情況下,扇面所觀察到的扇面回填、脫
離改道和河道化現象,以及渠道回淤時不流動層前端發生之渦流現象。
The effect of water-sediment ratio on channel accretion and alluvial fun
aggradation is experimentally explored in this study. The experimental
observation of the sand particles from the upstream storage tank through the
feeding channel, and their final accumulation on the platform were performed by
adjusting different discharges of water and sediment, respectively. The
experimental results show that the progradation of the fan is proportional to the
square root of the time at given discharge. In the cases of the water-sand ratio
greater than 2.1, the processes of backfilling, avulsion and channelization were
observed during the formation of the alluvial fun, while a moving shock
propagated in the upstream direction in the feeding channel.
[1] 陳瑞遠 (2016),「不同水砂比及渠道坡度對沖積扇型態之影響」,
碩士論文,國立中央大學土木工程研究所,中壢。
[2] 吳侑謙 (2015),「顆粒特性及水流條件對顆粒體運動及淤積型態之
實驗研究」,碩士論文,國立中央大學土木工程研究所,中壢。
[3] 曾文毅 (2014),「不同輸砂濃度及基準水面條件下之沖積扇形態分
析」,碩士論文,國立中央大學土木工程研究所,中壢。
[4] 許乃文 (2013),「直渠道顆粒流之顆粒密度分離效應」,碩士論文,
國立中央大學能源工程研究所,中壢。
[5] 吳俊銓 (2012),「山洪濁流形成沖積扇之實驗研究」,碩士論文,
國立中央大學土木工程研究所,中壢。
[6] 張瑞津 (1997),「臺灣沖積扇之分布、形態及地形意義」,地質
17 卷,1-2 期,69-93.
[7] Bahrami,S. (2012), “Tectonic controls on the morphometry of alluvial
fans around Danehkhoshk anticline,Zagros, Iran”, Geomorphology
180–181 (2013) 217–230.
[8] Canellil,L., Ferrero,A.M., Migliazza,M., and Segalini,A. (2012),
“Debris flow risk mitigation by the means of rigid and flexible barriers
– experimental tests and impact analysis”, Nat. Hazards Earth Syst. Sci.,
12, 1693–1699.
[9] Chant,L., Pease,P. ,Tchakerian,V. (1999), “Modelling alluvial fan
morphology”, Earth Surf. Process. Landforms24, 641-652.
[10] de Hass, T. , Berg ,W.V.G. , Braat, L. , Kleinhans,M.G. , “Autogenic
avulsion, channelization and backfilling dynamics of debris-flow
fans” ,Journal of International Association of Sedimentologists,
2016,1596-1619.
[11] Giles,T.P. (2010), “Investigating the use of alluvial fan volume to
represent fan size in morphometric studies”, Geomorphology 121, 317–
328.
[12] Guerit,L., M´etivier,F., Devauchelle,O., Lajeunesse,E., and
Barrier,L.(2014), “Laboratory alluvial fans in one dimension”, Physical
Review E 90, 022203.
[13] Miller,L.K. , Reitz,M.D., and Jerolmack,D.J. (2014), “Generalized
sorting profile of alluvial fans”, Generalized sorting profile of alluvial
fans, Geophys. Res. Lett., 41, 7191–7199, doi:10.1002/2014GL060991.
[14] Nicholas,A.P., Clarke,L. and Quine,T.A. (2009), “A numerical
modelling and experimental study of flow width dynamics on alluvial
fans” , Earth Surf. Process. Landforms 34, 1985–1993.
[15] Schraml,K., Thomschitz,B., McArdell,B.W., Graf,C., and
Kaitna,R.(2015), “Modeling debris-flow runout patterns on two alpine
fans with different dynamic simulation models”, Nat. Hazards Earth
Syst. Sci., 15, 1483–1492.
[16] Welsh,A., Davies,T. (2010), “Identification of alluvial fans susceptible
to debris-flow hazards”,Landslides ,8:183–194 ,DOI10.1007/s10346-010-0238-4.
[17] Wilford,D.J. , Sakals,M.E. , Innes,J.L. , Sidle,R.C. and
Bergerud,W.A.(2004), “Recognition of debris flow, debris flood and
flood hazard through watershed morphometrics” , Landslides ,1:61–66
DOI 10.1007/s10346-003-0002-0.
[18] Wells,S.G. and Harvey,A.M. (1987), “Sedimentologic and geomorphic
variations in storm-generated alluvial fans, Howgill Fells, northwest
England”,Geological Society of America Bulletin, v. 98, p. 182-198.
[19] Wasklewicz,T. and Scheinert,T. (2016) , “Development and
maintenance of a telescoping debris flow fan in response to
human-induced fan surface channelization, Chalk Creek Valley Natural
Debris Flow Laboratory, Colorado, USA” , Geomorphology 252, 51–65.