| 研究生: |
連紹鈞 Shao-Chun Lien |
|---|---|
| 論文名稱: |
結合放電與複合電鍍法製作微球狀研磨工具之研究 A study on fabrication of micro-spherical grinding tool using EDM combined with electro-codeposition |
| 指導教授: |
顏炳華
Biing-Hwa Yan 黃豐元 Fuang-Yuan Huang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 90 |
| 中文關鍵詞: | 微球狀研磨工具 、複合電鍍沉積 、微放電加工 |
| 外文關鍵詞: | micro-spherical cavity, Micro-EDM, micro-grinding, micro-spherical tool, Ni-diamond composites |
| 相關次數: | 點閱:20 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究之主要目的是研發之ㄧ種碳化鎢之微型球狀研磨工具的複合成形法,再藉其進行精密微凹型球狀模穴加工,以提昇國內相關產業在精微模具方面的製作技術。一般而言,利用WEDG線放電研磨法修整電極,可使工具電極承受較小的應力且可兼顧電極本身的硬度與韌性,防止電極之破損或彎曲,但目前為止絕大多數的研究均以圓柱、三角柱、四方柱及針狀等微細工具電極為主要成形目的,鮮少有以微軸前端呈球狀且將其作成微研磨工具為目的之研究。本研究利用微放電的方法製作成直徑110μm之微球狀電極,並配合複合電鍍沉積技術開發出微球狀研磨工具,期能應用於目前工業界所需精微且複雜化模具表面之研磨,以提高微小產品高精度且低粗糙度之表面品質。
實驗結果顯示,當以電極轉速為0rpm、電流3A、脈衝時間40μs進行微球狀電極成形加工時,可獲得較佳之球狀電極,並將此球狀電極搭配電流密度7 A dm-2、轉速15rpm、電鍍時間3min、在磨料添加量10g/L的電鍍液中進行複合電鍍沉積時可獲得較佳的微型球狀刀具。若利用此微球狀刀具進給速度5μm的條件下,搭配游離磨料對工件進行微凹穴精微研磨加工時,可得到極光滑的凹型球狀模穴,該模穴的粗糙度值可達0.353μm Rmax(0.0398μm Ra)的鏡面狀態。
This paper presents a novel process using electro-discharge-machining combined with co-deposited Ni-diamond composites to build a unique micro-spherical tool tested for machining a micro cavity. During processing, a micro tool is built by wire electro-discharge grinding, spherical forming, electrochemical machining and co-deposition. The tungsten carbide material is used as the tool substructure. The experimental result shows electro-discharge-machining combined with co-deposition can successfully build a unique micro-spherical diamond tool that the suitable parameters gained for building micro-spherical tools in spherical forming are a peak current of 3 A, pulse duration of 40 μs and spindle rotational speed of 0 rpm in air; in Ni-diamond co-deposition are: current density of 7 A dm-2, diamond particle size of 3 μm, diamond particle concentration of 10 g l-1 and rotational speed of 15 rpm. When using this method, the micro tool has a better geometric shape, uniform particle distribution and suitable particle adhesion quantity. Then, a micro-spherical cavity is tested to machine in 6061 aluminum plate, the roughness 0.353μm Rmax (0.039μm Ra) is obtained using the tool feed adopts as 5μm/min with free abrasive in micro-grinding
1. D. M. Allen, A. Lecheheb, Micro electro-doscharge machining of ink jet nozzles, optimum selection of material and machining parameters, Journal of Materials Processing Technology, 58, pp53-66, 1996.
2. T. Masuzawa, M. Fujino, K. Kobayashi and T. Suzuki, Wire Electro-Discharge Grinding for Micro-Machining, Annals of the CIRP, 341, pp431-434, 1985.
3. W. Ehrfeld and H. Lehr,Deep X-Ray Lithography for the production of three-dimensional microstructures from metals, Polymers and Ceramics, Vol. 45 No.3, pp349-365, 1995.
4. K. Kagaya,Y. Oishi,K.Yada, Micro-electrodischarge machining using water as a working Fluid-I: Micro-hole Drilling, Precision Engineering, 8 , pp156-162, 1986.
5. Seong. S. Choi, Jung ,D. W. Kim, M. A. Yakshin, J. Y. Park, Y. Kuk, Frabrication and microelectron gun arrays using laser micromachining, Microelectronic Engineering, 41, pp167-170, 1998.
6. R. K. Kupka, F. Bouamrance, Cremers, megtert, Smegtert, Mircofabrication, LIGA-X and applications, Applied Surface Science, 164 , pp97-110, 2000.
7. T, Masuzawa, An Approach to Micromachining through Machine Tool Technology, Annals of the CIRP, 341, pp419-425, 1985.
8. J. Gabler, L. Schafer, B. Menze and H. W. Hoffmeister, Micro abrasive pencils with CVD diamond coating, Diamond and Related Materials, 12 pp707-710, 2003.
9. W. Ahmed, N. Sein, N. Ali, Gracio and R. Woodwards, Diamond films grown on cemented WC-Co dental burs using an improved CVD method, Diamond and Related Materials, 12, pp1300-1306, 2003.
10. W. Ahmed, H sein, M. Jackson and R. Polini, Chemical vapour deposition of diamond films onto tungsten carbide dental burs, Tribology International, 37, pp957-964, 2004.
11. D. Y. Sheu, Micro-spherical probes machining by EDM, Journal of Micromechanics and Microengineering, 15, pp185-189, 2005.
12. C Guohui, Z W sheng, G Y feng, Instantaneous fabrication of tungsten microelectrode based on single electrical discharge, Journal of Materials Processing Technology, 168, pp83–88, 2005.
13. N Guglielmi, Kinetics of the Deposition of Inert Particles from Electrolytic Baths, Journal of the Electrochemical Society, 119-8, pp1009-1012, 1972.
14. J. P. Celis, J. R. Roos and C. Buelens, A Mathematical Model for the Electrolytic Codeposition of Particles with a Metallic Matrix, Journal of the Electrochemical Society, 1346, pp1402-1408, 1987.
15. B. J. Hwang and C. S. Hwang, Mechanism of Code-position of Silicon Carbide with Electrolytic Cobalt, Journal of the Electrochemical Society, 140-4, pp979-984, 1993.
16. E. C. Lee, J. W. Choi, A study on the mechanism of formation of electrocodeposited Ni-diamond coatings, Journal of the Surface and Coatings Technology, 148, pp234–240, 2001.
17. 趙承琛,界面科學基礎,復文書局,2002。
18. 曾信智,「黏彈性磨料應用於複雜曲面的精拋技術研究」,國立中央大學機械工程學系博士論文,2006。
19. 官君宇,「磨料噴射技術應用於精微拋光之研究」,國立中央大學機械 工程學系碩士論文,2006。
20. 施瑞堯,「旋轉式線電及線切割加工特性研究」,國立中央大學機械工程學系碩士論文,2001。
21. 蔡嘉倫,「汽車車體用6000系鋁合金時效及初期析出舉動之HR-TEM研究」,國立中央大學機械工程學系碩士論文,2005。
22. 吳瑋榤,「結合微放電與複合電鍍沉積之精微加工研究」,國立中央大學機械工程學系碩士論文,2006。
23. 賴耿陽,砂輪磨床工作技術,復漢出版社,1998。