跳到主要內容

簡易檢索 / 詳目顯示

研究生: 曾舜琳
Shun-Lin Tseng
論文名稱: 1 keV 電子作用對模擬星際含硫冰晶化學演化的影響
Effects of 1 keV Electron Irradiation on the Chemical Evolution of Simulated Interstellar Sulfur-Bearing Ices
指導教授: 陳俞融
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2025
畢業學年度: 113
語文別: 英文
論文頁數: 46
中文關鍵詞: 星際冰晶電子含硫物質
外文關鍵詞: interstellar ice, electrons, sulfur-bearing species
相關次數: 點閱:87下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在星際介質之中,恆星與行星的孕育發生於寒冷而稠密的分子雲內。這些雲團中,氣態分子逐漸凝附於塵埃顆粒上,形成星際冰晶,如同宇宙為未來的誕生儀式悄悄鋪設的舞台。氫硫化物(H2S),即為其中一種重要的含硫成分,被認為可能是解釋「宇宙硫缺失問題」的關鍵線索。
    為深入探究H2S在星際環境中的化學衍化,本研究模擬星際環境,使用1000電子伏特的電子對純H2S冰晶與H2O+H2S混合冰晶進行照射實驗。結果顯示,電子輻照會觸發H2S分子的轉化反應,生成各種硫鏈產物,包括H2S2、S3,甚至可能形成穩定的S8分子;而在富含水分子的混合冰晶中,亦觀察到氧化態硫物種的生成,如SO2與HSO4⁻等。
    這些結果顯示,電子作用過程在含硫冰晶的化學轉化與耗損中具有關鍵作用,不僅改變了冰晶的組成,也可能影響硫元素在星際分子雲、原恆星環境、彗星與冰封星體表面等系統中的行蹤與分布。簡言之,硫元素可能在固相中被封存,也可能因特定條件釋出至氣相,其循環途徑正逐步浮現。
    本研究為描繪宇宙中硫循環提供了重要一筆,而未來若進一步探討不同種類的輻射源與冰晶成分對反應路徑的影響,將有助於建構更為完整的星際硫化學模型,讓我們離解開宇宙的元素祕密更近一步。


    In the interstellar medium, the formation of stars and planets occurs within cold and dense molecular clouds, where gas-phase molecules condense onto dust grains to form icy mantles. Among these, hydrogen sulfide (H2S) is considered a key sulfur-bearing species that may help resolve the long-standing issue of missing cosmic sulfur. To better understand the chemical evolution of H2S in astrophysical environments, this study investigates the effects of 1000 eV electron irradiation on pure H2S and H2O+H2S ice mixtures under simulated interstellar conditions. Electron irradiation leads to the formation of various sulfur-chain products such as H2S2, S3, and possibly S8, as well as oxidized sulfur species like SO2 and HSO4- in H₂O-rich ice mixtures. These results indicate that electron processing plays an important role in the transformation and depletion of sulfur-bearing ices, providing insights into the sulfur chemistry of dense clouds, protostars, comets, and icy planetary surfaces. This work aims to understand the pathways by which sulfur can be sequestered in solid phases or released into the gas phase in different astrophysical contexts. Future studies involving varied irradiation sources and ice compositions are suggested to further refine models of sulfur cycling in space.

    摘要v Abstract vi Acknowledgement vii Contents viii 1 Introduction 1 2 Experimental 4 2.1 Experimentalsetup...................................................... 4 2.2 Experimentalprocedure.................................................. 5 3 Resultsanddiscussion 8 3.1 1keVelectronirradiationofthepureH2Sicesample................... 8 3.1.1 Iceprofileofamorphousandcrystalline ......................... 9 3.1.2 DepletionofH2Sicedepositedatdifferenttemperatures........ 11 3.1.3 Temperatureprogrammeddesorption(TPD)ofirradiatedH2S ice ........................................................................ 16 3.2 EffectsofH2O:H2Smixingratiosonsulfurchemistry................. 19 3.2.1 H2SDepletionBehaviorinH2O+H2SIceMixtures ............ 20 3.2.2 Formationofsulfur–oxygenproducts: SO2andHSO− 4 ......... 23 3.2.3 Desorptionbehavior andthermal stabilityof sulfur-bearing products.................................................................. 27 4 Conclusion 30 Bibliography 32

    Anderson, Dana E et al. (2013). “New Constraints on the Sulfur Reservoir in the Dense
    Interstellar Medium Provided by Spitzer Observations of S I in Shocked Gas”. In: The
    Astrophysical Journal 779.2, p. 141.
    Boogert, ACA et al. (1996). “Solid methane toward deeply embedded protostars.” In:
    Astronomy and Astrophysics, v. 315, p. L377-L380 315, pp. L377–L380.
    Carrascosa, H et al. (2024). “Formation and desorption of sulphur chains (H2S x and S x)
    in cometary ice: effects of ice composition and temperature”. In: Monthly Notices of
    the Royal Astronomical Society 533.1, pp. 967–978.
    Cazaux, S et al. (2022). “Photoprocessing of H2S on dust grains-Building S chains in
    translucent clouds and comets”. In: Astronomy & Astrophysics 657, A100.
    Cecchi-Pestellini, Cesare and Santi Aiello (1992). “Cosmic ray induced photons in dense
    interstellar clouds”. In: Monthly Notices of the Royal Astronomical Society 258.1,
    pp. 125–133.
    Ehrenfreund, Pascale and Steven B Charnley (2000). “Organic molecules in the interstellar
    medium, comets, and meteorites: a voyage from dark clouds to the early Earth”. In:
    Annual Review of Astronomy and Astrophysics 38.1, pp. 427–483.
    Ferraro, John R, G Sill, and U Fink (1980). “Infrared Intensity Measurements of Cry
    odeposited Thin Films of NH_3, NH_4HS, H_2S, and Assignments of Absorption
    Bands”. In: Applied Spectroscopy 34.5, pp. 525–533.
    Garozzo, M et al. (2010). “The fate of S-bearing species after ion irradiation of interstellar
    icy grain mantles”. In: Astronomy & Astrophysics 509, A67.
    Geballe, TR (1991). “On the reality of the 3.90-3.97 micron absorption feature in W33A”.
    In: Monthly Notices of the Royal Astronomical Society (ISSN 0035-8711), vol. 251,
    July 1, 1991, p. 24P, 25P. 251, 24P.
    Geballe, TR et al. (1985). “New infrared absorption features due to solid phase molecules
    containing sulfur in W 33A.” In: Astronomy and Astrophysics 146, pp. L6–L8.
    Gibb, EL et al. (2004). “Interstellar ice: the infrared space observatory legacy”. In: The
    astrophysical journal supplement series 151.1, p. 35.
    Grim, RJA and JM Greenberg (1987). “Photoprocessing of H2S in interstellar grain man
    tles as an explanation for S2 in comets”. In: Astronomy and Astrophysics (ISSN 0004
    6361), vol. 181, no. 1, July 1987, p. 155-168. 181, pp. 155–168.
    Hsu, Y.-Y. et al. (2025). “Photodesorption and photochemical evolution of H2S ice un
    der VUV irradiation: implications for the missing sulfur reservoir in dense molecular
    clouds”. Submitted.
    Huang, C-H et al. (2020). “Effects of 150–1000 eV electron impacts on pure carbon monox
    ide ices using the interstellar energetic-process system (IEPS)”. In: The Astrophysical
    Journal 889.1, p. 57.
    Irvine, WILLIAM M et al. (2000). “Comets: A link between interstellar and nebular chem
    istry”. In: Protostars and planets IV, p. 1159.
    Jiménez-Escobar, A and GM Muñoz Caro (2011). “Sulfur depletion in dense clouds and
    circumstellar regions-I. H2S ice abundance and UV-photochemical reactions in the
    H2O-matrix”. In: Astronomy & Astrophysics 536, A91.
    Lane, Arthur L, Robert M Nelson, and Dennis L Matson (1981). “Evidence for sulphur
    implantation in Europa’s UV absorption band”. In: Nature 292.5818, pp. 38–39.
    Larson, Laura J, Mayuso Kuno, and Fu-Ming Tao (2000). “Hydrolysis of sulfur trioxide
    to form sulfuric acid in small water clusters”. In: The Journal of Chemical Physics
    112.20, pp. 8830–8838.
    Liuti, G, S Dondes, and P Harteck (1966). “The Reaction of Hydrogen Sulfide and Atomic
    Oxygen1”. In: Journal of the American Chemical Society 88.14, pp. 3212–3215.
    Martín-Doménech, Rafael et al. (2024). “Ice origins of OCS and chemistry of CS2-bearing
    ice mantles”. In: Monthly Notices of the Royal Astronomical Society 535.1, pp. 807
    825.
    Moore, MH, RL Hudson, and RW Carlson (2007). “The radiolysis of SO2 and H2S in
    water ice: Implications for the icy jovian satellites”. In: Icarus 189.2, pp. 409–423.
    Muñoz Caro, Guillermo M, Héctor Carrascosa de Lucas, and Rafael Martín-Doménech
    (2025). “Photochemistry of interstellar ice forming complex organic molecules”. In:
    Nature Reviews Chemistry, pp. 1–16.
    Nguyen, Thanh et al. (2024). “Chemical pathways of SO2 with hydrogen atoms on inter
    stellar ice analogues”. In: The Astrophysical Journal 976.2, p. 250.

    QR CODE
    :::