跳到主要內容

簡易檢索 / 詳目顯示

研究生: 劉仕彬
Shih-Bin Liu
論文名稱: 硫摻雜對 BiOCuSe 晶格熱膨脹與磁阻特性之影響
Effects of S-doping on the lattice thermal expansion and magnetoresistive characteristics of BiOCuSe
指導教授: 李文献
Wen-Hsien Li
口試委員:
學位類別: 博士
Doctor
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 106
中文關鍵詞: 熱膨脹磁阻硫摻雜氧硫化合物
外文關鍵詞: thermal expansion, magnetoresistance, Sulfur doping, oxychalcogenide
相關次數: 點閱:25下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要是透過X光繞射、電傳輸量測、巨觀磁性量測等實驗方法,來觀測硫摻雜對層狀晶體的BiOCuSe 氧硫化合物粉末,其晶格熱膨脹、磁阻與磁特性等物理特徵之影響。在這一系列的粉末化合物中,晶體結構仍維持P4/nmm 四方對稱,但晶格常數會隨著硫摻雜的增加而明顯遞減。在樣品中發現可藉由硫含量調控的熱膨脹行為,並在硫比例為10 %時,其熱膨脹係數最小。這個特殊的物理表現,來自晶體中(Bi2O2)2+ 和(Cu2Se2)2- 兩層間的電荷轉移現象。
    除了硫比例為30%的樣品,實驗量測所得之電阻,均能以三維VRH傳導行為加以描述。而磁阻隨外加磁場的變化量會因溫度和硫摻雜之不同而不同,並非常見的平方增加之關係。R(T)與MR(T)圖,皆能被30%的硫劃分成兩個區域,且與銅氧離子上電子密度分佈之可變性相關。摻雜程度較分界點(x=0.3)低時,電子密度分佈會隨硫增加變化,電阻和磁阻亦隨硫增加遞減。摻雜程度高於分界點時,電子密度分佈不隨硫增加變化,電阻會再次增高,磁阻則有從正到負的變遷現象。上述之傳輸行為的改變,推測可能來自硫摻雜對傳導帶與價電帶之影響,被改變後的電子能隙是造成電阻與磁阻變化的主要原因。而在這一系列的BiOCuSe1-xSx摻雜樣品中,沒有量測到明顯的磁性變化。


    This article reports on the observations of lattice thermal expansion, magnetoresistive characteristics, and magnetic properties in layered oxychalcogenide BiOCuSe1-xSx powder, through the x-ray diffraction, electric transport, ac magnetic susceptibility, and magnetization measurements. In those powder compounds, crystallizes still into a tetragonal P4/nmm symmetry, but the lattice constants will be suppressed by substituting the sulfur for selenium in BiOCuSe. An alterable lattice thermal expansion is achieved mainly by tuning the sulfur doping level, and this exceptional small thermal expansion will be detected when x = 0.1. Partially electronic charge transfer between (Bi2O2)2+ and (Cu2Se2)2- layers will produce the minimal thermal expansion at this special sulfur composition.
    The temperature dependences of resistivity R can be described by the 3D variable range hopping conduction, except the data of x = 0.3 sample. A vicissitude of magnetoresistance (MR) can be observed from positive to negative by altering the sulfur composition, and there is significant relation with the variability of electron distribution near Cu and O ions. R(T) and MR(T) curves both can be classified into two types with the sulfur composition. This borderline between the two regions is at 30 %. We suppose this phenomenon can conjunction with the S-doping effect of conduction band and valence band. The changed energy gap leads to the variation of transport and magnetoresistive characteristics. No apparent magnetism is observed of BiOCuSe1-xSx samples.

    Abstract in English i Abstract in Chinese ii Acknowledgment iii Table of Contents iv List of Figures vii List of Tables xiii Chapter 1 Introduction 1 1-1 Materials with layered tetragonal structure 1 1-1-1 Evolution of layered structure 2 1-1-2 Layered iron-based superconductor REFeAsO 4 1-2 Previous researches of unsubstituted BiOCuCh 7 1-2-1 Electronic structure and optical properties 7 1-2-2 Transport and thermoelectric properties 10 1-2-3 Magnetism and thermal expansion 14 References 17 Chapter 2 Experimental details and methods 21 2-1 Sample preparation 21 2-2 Sample characterization 22 2-2-1 X-ray diffractometer 22 2-2-2 Scanning electron microscope 24 2-2-3 Energy dispersive spectrometer 25 2-3 Magnetic measurements 28 2-3-1 Physical property measurement system 28 2-4 Transport measurements 30 2-4-1 Overview of resistivity option 30 2-4-2 Resistivity and magnetoresistance 31 References 33 Chapter 3 Theoretical Backgrounds 34 3-1 X-ray diffraction 34 3-1-1 Theory of diffraction 35 3-1-2 Details for powder diffraction 37 3-1-3 The Rietveld method 38 3-2 Thermal expansion 41 3-2-1 Thermal expansion coefficient 41 3-2-2 Physical origin of thermal expansion 43 3-3 Transport properties of material 45 3-3-1 Nearest-neighbor hopping model 45 3-3-2 Mott’s variable range hopping model 46 3-3-3 Magnetoresistance 49 3-4 Magnetic properties of material 50 3-4-1 AC magnetic susceptibility 50 3-4-2 Langevin theory of paramagnetism 53 References 55 Chapter 4 Tuneable thermal expansion 56 4-1 Classification of thermal expansion 56 4-2 Sample characterization and crystalline structure 58 4-2-1 Structural analysis 58 4-2-2 Composition and surface characterization 67 4-3 Effects of S-doping on thermal expansion of the lattice 70 4-3-1 Thermal expansion of lattice parameters 70 4-3-2 Charge transport and weak local lattice distortion 74 4-4 Magnetic independence of thermal expansion 81 4-5 Conclusions 83 References 84 Chapter 5 Transport and magnetoresistive characteristics 86 5-1 Variable range hopping conduction 86 5-2 Magnetoresistance 90 5-2-1 Crossover from positive to negative MR 90 5-2-2 Electronic charge distribution 93 5-3 Conclusions 99 References 100 Chapter 6 Magnetization and magnetic susceptibility 101 6-1 Magnetic properties from Langevin magnetization profile 101 6-2 Negligible magnetic susceptibility 104 6-3 Conclusions 106

    Chapter 1
    [1] Z.-A. Ren, G.-C. Che, X.-L. Dong, J. Yang, W. Lu, W. Yi, X.-L. Shen, Z.-C. Li, L.-L. Sun, F. Zhou, & Z.-X Zhao, Europhysics Letters 83, 17002 (2008).
    [2] V. Johnson, & W. Jeitschko, J. Solid State Chem. 11, 161 (1974).
    [3] H. Sprenger, J. Less-Common Met. 34, 39 (1974).
    [4] L. S. Andrukhiv, L.O. Lysenko, Ya. P. Yarmolynk, & E. I. Gladyshevskii, Dopov. Akad. Nauk. Ukr. Ser. A, 645 (1975).
    [5] F. Jellinek, & H. Hahn, Naturwissenschaften 49, 103 (1962).
    [6] A. J. Klein Haneveld, & F. Jellinek, Rec. Trav. Chim. 83, 776 (1964).
    [7] V. Johnson, & W. Jeitschko, J. Solid State Chem. 6, 306 (1973).
    [8] W.B. Pearson, Z. Kristallogr. 171, 23 (1985).
    [9] P. Villars, & L.D. Calvert, Pearson’s Handbook of Crystallographic Data for Intermetallic Phases, 2nd Ed., American Society for Metals, Materials Park, OH, 1991, and desk edition, 1997.
    [10] M. Palazzi, C. Carcaly, & J. Flahaut, J. Solid State Chem. 35, 150 (1980).
    [11] M. Palazzi, & S. Jaulmes, Acta Crystallogr. B37, 1337 (1981).
    [12] P. Palazzi, C. R. Acad. Sc. Ser. II 292, 789 (1981).
    [13] K. Ueda, S. Inoue, S. Hirose, H. Kawazoe, & H. Hosono, Appl. Phys. Lett. 77, 2701 (2000).
    [14] H. Hiramatsu, H. Kamioka, K. Ueda, H. Ohta, T. Kamiya, M. Hirano, & H. Hosono, Phys. Stat. Sol. A 203, 2800 (2006).
    [15] D. Kaczorowski, J.H. Albering, H. Noël, & W. Jeitschko, J. Alloys Compd. 216, 117 (1994).
    [16] B. I. Zimmer, W. Jeitschko, J.H. Albering, R. Glaum, & M. Reehuis, J. Alloys Compd. 229, 238 (1995).
    [17] J.H. Albering, & W. Jeitschko, Z. Naturforsch. 51b, 257 (1996).
    [18] A. T. Nientiedt, B. I. Zimmer, P. Wollesen, & W. Jeitschko, Z. Kristallogr. Suppl. 11, 101 (1996).
    [19] P.Wollesen, J.W. Kaiser, & W. Jeitschko, Z. Naturforsch. 52b, 1467 (1997).
    [20] A.T. Nientiedt, W. Jeitschko, P.G. Pollmeier, & M. Brylak, Z. Naturforsch. 52b, 560 (1997).
    [21] A. T. Nientiedt, & W. Jeitschko, Inorg. Chem. 37, 386 (1998).
    [22] P. Quebe, L. J. Terbüchte, & W. Jeitschko, J. Alloys Compd. 302, 70 (2000).
    [23] M. Reehuis, & W. Jeitschko, J. Phys. Chem. Solids 51, 961 (1990).
    [24] H. Lincke, T. Nilges, & R. Pöttgen, Z. Anorg. Allg. Chem. 632, 1804 (2006).
    [25] H. Lincke, R. Glaum, V. Dittrich, M. Tegel, D. Johrendt, W. Hermes, M.H. Möller, T. Nilges, & R. Pöttgen, Z. Anorg. Allg. Chem. 634, 1339 (2008).
    [26] Y. Kamihara, H. Hiramatsu, M. Hirano, R. Kawamura, H. Yanagi, T. Kamiya, & H. Hosono, J. Am. Chem. Soc. 128, 10012 (2006).
    [27] T. Watanabe, H. Yanagi, T. Kamiya, Y. Kamihara, H. Hiramatsu, M. Hirano, & H. Hosono, Inorg. Chem. 46, 7719 (2007).
    [28] M. Tegel, D. Bichler, & D. Johrendt, Solid State Sci. 10, 193 (2008).
    [29] Y. Kamihara, T. Watanabe, M. Hirano, & H. Hosono, J. Am. Chem. Soc. 130, 3296 (2008).
    [30] Z.-A. Ren, J. Yang, W. Lu, W. Yi, G.-C. Che, X.-L. Dong, L.-L. Sun, & Z.-X. Zhao, Mater. Res. Innov. 12, 1 (2008).
    [31] Z.-A. Ren, W. Lu, J. Yang, W. Yi, X.-L. Shen, Z.-C. Li, G.-C. Che, X.-L. Dong, L.-L. Sun, F. Zhou, & Z.-X. Zhao, Chin. Phys. Lett. 25, 2215 (2008).
    [32] T. Nomura, S.W. Kim, Y. Kamihara, M. Hirano, P.V. Sushko, K. Kato, M. Takata, A. L. Shluger, & H. Hosono, Supercond. Sci. Technol. 21, 125028 (2008).
    [33] C. De la Cruz, Q. Huang, J.W. Lynn, J. Li,W. Ratcliff, L. L. Zarestky, H.A. Mook, G. F. Chen, J. L. Luo, N. L. Wang, & P. Dai, Nature 453, 899 (2008).
    [34] S. Kitao, Y. Kobayashi, S. Higashitaniguchi, M. Saito, Y. Kamihara, M. Hirano, T. Mitsui, H. Hosono, & M. Seto, J. Phys. Soc. Jpn. 77, 103706 (2008).
    [35] H.-H. Klauss, H. Luetkens, R. Klingeler, C. Hess, F. J. Litterst, M. Kraken, M.M. Korshunov, I. Eremin, S.- L. Drechsler, R. Khasanov, A. Amato, J. Hamann- Borrero, N. Leps, A. Kondrat, G. Behr, J. Werner, & B. Büchner, Phys. Rev. Lett. 101, 077005 (2008).
    [36] M. Tegel, I. Schellenberg, R. Pöttgen, & D. Johrendt, Z. Naturforsch. 63b, 1057 (2008).
    [37] O. K. Andersen, Phys. Rev. B 12, 3060 (1975).
    [38] O. Jepsen & O. K. Z. Andersen, Phys. B. 97, 35 (1995).
    [39] W. C. Sheets, E. S. Stampler, H. Kabbour, M. I. Bertoni, L. Cario, T. O. Mason, T. J. Marks, & K. R. Poeppelmeier, Inorg. Chem. 46, 10741 (2007).
    [40] H. W. Eng, P. W. Barnes, B. M. Auer, & P. M. Woodward, J. Solid State Chem. 175, 94 (2003).
    [41] E. S. Stampler, W. C. Sheets, M. I. Bertoni, W. Prelller, T. O. Mason, & K. R. Poeppelmeier, Inorg. Chem. 47, 10009 (2008).
    [42] P. S. Berdonosov, A. M. Kusainova, L. N. Kholodkovskaya, V. A. Dolgikh, L. G. Akselrud, & B. A. Popovkin, J. Solid State Chem. 118, 74 (1995).
    [43] A. Zakutayev, P. F. Newhouse, R. Kykyneshi, P. A. Hersh, D. A. Keszler, & J. Tate, Appl. Phys. A 102, 485 (2011).
    [44] H. Hiramatsu, H. Yanagi, T. Kamiya, K. Ueda, M. Hirano, & H. Hosono, Chem. Mater. 20, 326 (2008).
    [45] T. Ohtani, Y. Tachibana, & Y. Fujii, J. Alloys Compd. 262–263, 175 (1997).
    [46] H. Ohta, S. Kim, Y. Mune, T. Mizoguchi, K. Nomura, S. Ohta, T. Nomura, Y. Nakanishi, Y. Ikuhara, M. Hirano, H. Hosono, & K. Koumoto, Nat. Mater. 6, 129 (2007).
    [47] Y. Liu, L.-D. Zhao, Y.-C. Liu, J. Lan, W. Xu, F. Li, B.-P. Zhang, D. Berardan, N. Dragoe, Y.-H. Lin, C.-W. Nan, J.-F. Li, & H. Zhu, J. Am. Chem. Soc. 133, 20112 (2011).
    [48] S. K. Karna, C.-H. Hung, C.-M. Wu, C.-W. Wang, W.-H. Li, R. Sankar, F.-C. Chou, & M. Avdeev, Dalton Trans. 42, 15581 (2013).
    [49] S. K. Karna, C.-W. Wang, C.-M. Wu, C.-K. Hsu, D. Hsu, C.-J. Wang, W.-H. Li, R. Sankar, & F.-C. Chou, J. Phys.: condens. Matter 24, 266004 (2012).
    [50] A. Ubaldini, E. Giannini, C. Senatore, & D. van der Marel, Physica C 470, S356 (2010).
    [51] L. Ortenzi, S. Biermann, O. K. Andersen, I. I. Mazin, & L. Boeri, Phys. Rev. B 83, 100505(R) (2011).
    [52] S. K. Karna, R. Sankar, C.-M. Wu, C.-W. Wang, D. Hsu, C.-J. Wang, F.-C. Chou, & W.-H. Li, J. Phys. Soc. Jpn. 80, SB011 (2011).
    [53] S. K. Karna, W.-H. Li, C.-M. Wu, C.-W. Wang, C.-Y. Li, R. Sankar, & F.-C. Chou, J. Phys. Soc. Jpn. 82, 094705 (2013).

    Chapter 2
    [1] http://www.qdusa.com/sitedocs/productBrochures/mag3-07.pdf.
    [2] http://www.qdusa.com/sitedocs/productBrochures/16TPPMS7.pdf.
    [3] http://www.mrl.ucsb.edu/sites/default/files/mrl_docs/instruments/resPPMS.pdf.

    Capter 3
    [1] A. Guinier, X-ray diffraction in crystals, imperfect crystals, and amorphous bodies, W. H. Freeman & Company, San Francisco, 1963.
    [2] B. E. Warren, X-ray diffraction, Dover Publications, New York, 1990.
    [3] A. D. Krawitz, Introduction to diffraction in materials science and engineering, John Wiley & Sons, New York, 2001.
    [4] H. M. Rietveld, Acta Crystallogr. 22, 151 (1967).
    [5] H. M. Rietveld, J. Appl. Crystallography. 2, 65 (1969).
    [6] R. A. Young (Eds.), The Rietveld Method, 4th Ed., Oxford University Press, New York, 2002.
    [7] http://www.mx.iucr.org/iucr-top/comm/cpd/rietveld.html
    [8] B. H. Toby, J. Appl. Cryst. 34, 210 (2001).
    [9] A. C. Larson & R. B. von Dreele, GSAS Manual, p.167
    [10] P. V. E. McClintock, and D. J. Meredith, & J. K. Wigmore, Matter at Low Temperatures, Blackie & Son, London, 1984.
    [11] K. Morigaki, Physics of Amorphous Semiconductors, Chap. 7, World Scientific, Singapore, 1999.
    [12] N. F. Mott, Phil. Mag. 19, 835 (1969).
    [13] N. F. Mott & E. A. Davis, Electronic Processes in Non-Crystalline Materials, 2nd Ed., Clarendon press, Oxford, 1979.
    [14] R. W. Rollins, H. Küpfer, & W. Gey, J. Appl. Phys. 45, 5392 (1974).
    [15] R. Singh, R. Lal, U. C. Upreti, D. K. Suri, A. V. Narlikar, V. P. S. Awana, J. Albino Aguiar, & Md. Shahabuddin, Phys. Rev. B 55, 1216 (1997).
    [16] J. M. D. Coey, Magnetism and Magnetic Materials, Cambridge University Press, New York, 2010.

    Chapter 4
    [1] H.-M. Kagaya, & T. Soma, Solid State Commun. 85, 617 (1993).
    [2] R. Douglas, & B. Ellis (Eds.), Amorphous Materials, Wiley, New York, 1970.
    [3] G. Hausch, R. Bächer, & J. Hartmann, Physica B 161, 22 (1989).
    [4] T. A. Mary, J. S. Evans, O. Vogt, & A.W. Sleight, Science 272, 90 (1996).
    [5] R. H. Baughman & D. S. Galvao, Nature 365, 735 (1993).
    [6] C. E. Guillaume, C.R. Hebd. Seances Acad. Sci. 125, 235 (1897).
    [7] A. Sleight, Nature 425, 674 (2003).
    [8] J. R. Salvador, F. Gu, T. Hogan, & M. G. Kanatzidis, Nature 425, 702 (2003).
    [9] Y. Zhang, Z. Islam, Y. Ren, P. A. Parilla, S. P. Ahrenkiel, P. L. Lee, A. Mascarenhas, M. J. McNevin, I. Naumov, H. X. Fu, X. Y. Huang, & J. Li, Phys. Rev. Lett. 99, 215901 (2007).
    [10] J. Li, W. H. Bi, W. Ki, X. Y. Huang, & S. Reddy, J. Am. Chem. Soc. 129, 14140 (2007).
    [11] J. Chen, X. R. Xing, C. Sun, P. H. Hu, R. B. Yu, X. W. Wang, & L. H. Li, J. Am. Chem. Soc. 130, 1144 (2008).
    [12] K. Takenaka & H. Takagi, Appl. Phys. Lett. 94, 131904 (2009).
    [13] X. Song, Z. Sun, Q. Huang, M. Rettenmayr, X. Liu, M. Seyring, G. Li, G. Rao, & F. Yin, Adv. Mater. 23, 4690 (2011).
    [14] T. Yokoyama & K. Eguchi, Phys. Rev. Lett. 107, 065901 (2011).
    [15] X. Zhang, Y. Ren, M. Roushan, & J. Li, Eur. J. Inorg. Chem. 36, 5966 (2012).
    [16] K. J. Miller, C. P. Romao, M. Bieringer, B. A. Marinkovic, L. Prisco, & M. A. White, J. Am. Ceram. Soc. 96, 561 (2013).
    [17] X. G. Zheng, H. Kubozono, H. Yamada, K. Kato, Y. Ishiwata, & C. N. Xu, Nat. Nanotechnol. 3, 724 (2008).
    [18] S. Iikubo, K. Kodama, K. Takenaka, H. Takagi, M. Takigawa, & S. Shamoto, Phys. Rev. Lett. 101, 205901 (2008).
    [19] Y. W. Long, N. Hayashi, T. Saito, M. Azuma, S. Muranaka & Y. Shimakawa, Nature 458, 60 (2009).
    [20] D. Das, T. Jacobs, & L. J. Barbour, Nat. Mater. 9, 36 (2010).
    [21] P. Hu, J. Chen, J. Deng, & X. Xing, J. Am. Chem. Soc. 132, 1925 (2010).
    [22] L. Sun & P. Kwon, Mater. Sci. Eng. A 527, 93 (2009).
    [23] L. Sun, A. Sneller, & P. Kwon, Compos. Sci. Technol. 68, 3425 (2008).
    [24] A. Poowancum, K. Matsumaru, & K. Ishizaki, J. Am. Ceram. Soc. 94, 1354 (2011).
    [25] L. V. B. Diop, M. Amara, & O. Isnard, J. Phys.: Condens. Matter 25, 416007 (2013).
    [26] T. Hamada & K. Takenaka, J. Appl. Phys. 111, 07A904 (2012).
    [27] http://www.telegraph.co.uk/news/worldnews/australiaandthepacific/australia/4414203/Southern-Australia-endures-worst-heatwave-for-150-years.html
    [28] A. C. Larson & R. B. Von Dreele, General Structure Analysis System, Report LA-UR-86-748, Los Alamos National Laboratory, Los Alamos, 1990.
    [29] H. M. Rietveld, J. Appl. Crystallogr. 2, 65 (1969).
    [30] K. Ueda, H. Hiramatsu, H. Ohta, M. Hirano, T. Kamiya, & H. Hosono, Phys. Rev. B 69, 155305 (2004).
    [31] G. K. White & P. J. Meeson, Experimental Techniques in Low-Temperature Physics, 4th Ed., p. 223, Oxford University Press Inc., New York, 2002.
    [32] B. E. Warren, X-ray diffraction, Ch. 9.2, p. 108-111, Dover Publications, New York, 1990.
    [33] N. E. Brese & M. O’Keeffe, Acta Cryst. B47, 192 (1991).
    [34] S. K. Karna, W.-H. Li, C.-M. Wu, C.-W. Wang, C.-Y. Li, R. Sankar, and F. C. Chou, J. Phys. Soc. Jpn. 82, 094705 (2013).

    Chapter 5
    [1] B. L. Shklovskii & A. L. Efros, Electronic Properties of Doped Semiconductors, Springer-Verlag, Berlin, 1984.
    [2] M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, P. Eitenne, G. Creuzet, A. Friederich, & J. Chazelas, Phys. Rev. Lett. 61, 2472 (1988).
    [3] J. M. D. Coey, J. Appl. Phys. 85, 5576 (1999).
    [4] M. Venkatesan, P. Velasco, J. A. Alonso, J. L. Martínez & J. M. D. Coey, J. Phys.: Condens. Matter 16, 3465 (2004).
    [5] T. Block, S. Wurmehl, & C. Felser, Appl. Phys. Lett. 88, 202504 (2006).
    [6] M. Saloaro, S. Majumdar, H. Huhtinen, & P. Paturi, J. Phys.: Condens. Matter 24, 366003 (2012).
    [7] Y. Kopelevich, R. R. da Silva, B. C. Camargo, & A. S. Alexandrov, J. Phys.: Condens. Matter 25, 466004 (2013).

    QR CODE
    :::