跳到主要內容

簡易檢索 / 詳目顯示

研究生: 黃楷棋
Kai-Qi Huang
論文名稱: Machine Learning based Path Prediction System - Adapting One Model for All Intersections
指導教授: 孫敏德
Min-Te Sun
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 資訊工程學系
Department of Computer Science & Information Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 58
中文關鍵詞: 路徑預測機器學習
相關次數: 點閱:6下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在各式的道路環境下,十字路口是其中非常容易引發交通事故的地點。為了降低路口事故的發生率並增進道路安全,本篇論文提出一車載路徑預測系統。當車載行駛接近至十字路口,該系統能及時預測車輛的未來路徑,以即時警示駕駛事故發生的可能性。本篇論文採用簡易且價格低廉的GPS感測器採收車載行駛至十字路口的軌跡資料,並將軌跡資料中的方位角轉換為偏轉角,再整合車速與偏轉角來產生訓練資料。與此同時,我們實作了Borderline-SMOTE來增加少數類別的占比,解決類別不平衡問題。在本篇的演算法中,我們使用隨機森林與自適應增強兩種集成學習演算法來訓練模型,並且實作交叉驗證來降低過適問題的發生機率。最後的實驗結果指出,隨機森林的效能優於自適應增強,而自適應增強的效能優於基礎分類器(決策樹)。


    Intersections have long been known as the place where major traffic accidents most likely to happen. To reduce the number of accidents, this thesis proposes a vehicle path prediction system to predict the future direction when a vehicle is about to cross an intersection. The simple and inexpensive sensor, such as GPS sensor, is used to collect the dataset of vehicle trajectories at intersections. The trend of vehicle movements are derived from the heading in the trajectories, which is then combined with the vehicle speed to generate training data. To deal with the class imbalance problem, Borderline-SMOTE is implemented to increase the proportion of the minority class. In our path prediction algorithm, two ensemble learning algorithms, i.e., Random Forests and AdaBoost, are adopted for model training . The cross validation technique is used to avoid the issue of overfitting. The experiment results indicate that the Random Forest algorithm exhibits the best performance, and the Adaboost algorithm performs better than the base learner (i.e., Decision Tree).

    1 Introduction 1 2 RelatedWork 4 2.1 NonImage-basedmethods........................... 4 2.1.1 GPS................................... 4 2.1.2 IMU................................... 5 2.1.3 DigitalMaps.............................. 6 2.2 Image-basedmethods.............................. 6 3 Preliminary 9 3.1 MachineLearning................................ 9 3.1.1 SupervisedLearning.......................... 9 3.1.2 UnsupervisedLearning......................... 13 3.1.3 ReinforcedLearning.......................... 14 3.2 ImbalancedData................................ 15 4 Design 18 4.1 DataCollection................................. 19 4.2 InternalCalculation............................... 20 4.3 PathPredictionAlgorithm........................... 22 4.3.1 DataExtraction............................. 22 4.3.2 DataPreprocessing........................... 23 4.3.3 ModelGeneration............................ 24 4.3.4 VehiclePathPrediction........................ 27 5 Performance 28 5.1 ExperimentData................................ 28 5.2 EvaluationMeasures.............................. 29 5.2.1 ConfusionMatrix............................ 30 5.2.2 ROCcurve............................... 30 5.2.3 F-measure................................ 32 5.3 PerformanceAnalysis.............................. 32 6 Conclusions 41 Reference 42

    [1] Thespeci cationofgpssensor. https://www.itri.org.tw/chi/Content/
    MsgPic01/Contents.aspx?SiteID=1&MmmID=620624054325020775&MSid=
    62063464.
    [2] AngelosAmditis,ArisPolychronopoulos,IoannisKaraseitanidis,GeorgeKatsoulis,
    and EvangelosBekiaris.Multiplesensorcollisionavoidancesystemforautomotive
    applications usinganimmapproachforobstacletracking.In Information Fusion,
    2002. ProceedingsoftheFifthInternationalConferenceon, pages812{817.IEEE,
    2002.
    [3] PeterLBartlettandMikhailTraskin.Adaboostisconsistent. Journal ofMachine
    LearningResearch, pages2347{2368,2007.
    [4] D. Caveney.Vehicularpathpredictionforcooperativedrivingapplicationsthrough
    digital mapanddynamicvehiclemodelfusion.In 2009 IEEE70thVehicularTech-
    nologyConferenceFall, 2009.
    [5] M EmreCelebi,HassanAKingravi,andPatricioAVela.Acomparativestudyof
    ecientinitializationmethodsforthek-meansclusteringalgorithm. Expertsystems
    with applications, pages200{210,2013.
    [6] YongquanChen,YuandongSun,NingDing,WingKwongChung,HuihuanQian,
    GuoqingXu,andYangshengXu.Areal-timevehiclesafetysystem.In System
    Integration(SII),2012IEEE/SICEInternationalSymposiumon, pages957{962.
    IEEE, 2012.
    [7] CorinnaCortesandVladimirVapnik.Support-vectornetworks. Machine learning,
    pages 273{297,1995.
    [8] NachiketDeo,AkshayRangesh,andMohanMTrivedi.Howwouldsurroundvehicles
    move?auni edframeworkformaneuverclassi cationandmotionprediction. arXiv
    preprintarXiv:1801.06523, 2018.
    [9] CharlesElkan.Usingthetriangleinequalitytoacceleratek-means.In Proceedingsof
    the 20thInternationalConferenceonMachineLearning(ICML-03), pages147{153,
    2003.
    [10] TomFawcett.Anintroductiontorocanalysis. Pattern recognitionletters, pages
    861{874, 2006.
    [11] Hui Han,Wen-YuanWang,andBing-HuanMao.Borderline-smote:anewover-
    sampling methodinimbalanceddatasetslearning.In International Conferenceon
    IntelligentComputing, pages878{887.Springer,2005.
    [12] DavidJHandandRobertJTill.Asimplegeneralisationoftheareaundertheroc
    curveformultipleclassclassi cationproblems. Machine learning, pages171{186,
    2001.
    [13] TinKamHo.Randomdecisionforests.In Documentanalysisandrecognition,1995.,
    proceedingsofthethirdinternationalconferenceon, pages278{282.IEEE,1995.
    [14] JihuaHuangandHan-ShueTan.Vehiclefuturetrajectorypredictionwithadgps/ins-
    based positioningsystem.In 2006 AmericanControlConference, pages6pp.{,2006.
    [15] AndreasJahn,KlausDavid,andSebastianEngel.5g/ltebasedprotectionofvulner-
    able roadusers:Detectionofcrossingacurb.In VehicularTechnologyConference
    (VTC Fall),2015IEEE82nd, pages1{5.IEEE,2015.
    [16] PrnayJain,ShubhamVarma,HariPrabhatGupta,TanimaDutta,etal.Asu-
    pervisedapproachtowardsnetworkcontrolsystemmodelling.In Communication
    Systems andNetworks(COMSNETS),20179thInternationalConferenceon, pages
    346{353. IEEE,2017.
    [17] ChangMookKang,SooJungJeon,Seung-HiLee,andChungChooChung.Para-
    metric trajectorypredictionofsurroundingvehicles.In VehicularElectronicsand
    Safety (ICVES),2017IEEEInternationalConferenceon, pages26{31.IEEE,2017.
    [18] W. Kim,C.M.Kang,Y.S.Son,S.H.Lee,andC.C.Chung.Vehiclepathprediction
    using yawaccelerationforadaptivecruisecontrol. IEEE TransactionsonIntelligent
    TransportationSystems, pages1{12,2018.
    [19] M. Liebner,M.Baumann,F.Klanner,andC.Stiller.Driverintentinferenceaturban
    intersectionsusingtheintelligentdrivermodel.In 2012 IEEEIntelligentVehicles
    Symposium, pages1162{1167,2012.
    [20] MartinLiebner,MichaelBaumann,FelixKlanner,andChristophStiller.Driver
    intentinferenceaturbanintersectionsusingtheintelligentdrivermodel.In Intelligent
    VehiclesSymposium(IV),2012IEEE, pages1162{1167.IEEE,2012.
    [21] WangLinglin,LiuYongxin,andZhaiXiaoke.Designofreinforcelearningcontrol
    algorithm andveri edininvertedpendulum.In ControlConference(CCC),2015
    34th Chinese, pages3164{3168.IEEE,2015.
    [22] Rushi LongadgeandSnehalataDongre.Classimbalanceproblemindatamining
    review. arXiv preprintarXiv:1305.1707, 2013.
    [23] IvanPisa,GuillemBoquet,JoseLopezVicario,AntoniMorell,andJavierSerrano.
    Vaima:Av2vbasedintersectiontracmanagementalgorithm.In WirelessOn-
    demand NetworkSystemsandServices(WONS),201814thAnnualConferenceon,
    pages 125{128.IEEE,2018.
    [24] Aris Polychronopoulos,UllrichScheunert,andFabioTango.Centralizeddatafusion
    for obstacleandroadborderstrackinginacollisionwarningsystem.In International
    ConferenceonInformationFusion, pages210{216,2004.
    [25] DavidMartinPowers.Evaluation:fromprecision,recallandf-measuretoroc,in-
    formedness, markednessandcorrelation.2011.
    [26] SukmawatiAnggraeniPutrietal.Combiningintegretedsamplingtechniquewith
    feature selectionforsoftwaredefectprediction.In CyberandITServiceManagement
    (CITSM), 20175thInternationalConferenceon, pages1{6.IEEE,2017.
    [27] J. RossQuinlan.Inductionofdecisiontrees. Machine learning, pages81{106,1986.
    [28] LawrenceRRabiner.Atutorialonhiddenmarkovmodelsandselectedapplications
    in speechrecognition. ProceedingsoftheIEEE, pages257{286,1989.
    [29] HikaruShimizu,M-AKobayashi,HiroshiIshikawa,andHarukoFujii.Trac
    ow
    controlsysteminurbanroadnetworks.In CircuitsandSystems,2004.MWSCAS'04.
    The 200447thMidwestSymposiumon, pagesiii{149.IEEE,2004.
    [30] MarinaSokolovaandGuyLapalme.Asystematicanalysisofperformancemeasures
    for classi cationtasks. Information Processing&Management, pages427{437,2009.
    [31] YoungSeopSon,WonheeKim,Seung-HiLee,andChungChooChung.Asynchronous
    sensor fusionusingmulti-ratekalman lter.,pages1551{1558,2014.
    [32] H. S.TanandJ.Huang.Dgps-basedvehicle-to-vehiclecooperativecollisionwarning:
    Engineering feasibilityviewpoints. IEEE TransactionsonIntelligentTransportation
    Systems, pages415{428,Dec2006.
    [33] Bo Tang,SalmanKhokhar,andRakeshGupta.Turnpredictionatgeneralizedin-
    tersections. In IntelligentVehiclesSymposium(IV),2015IEEE, pages1399{1404.
    IEEE, 2015.
    [34] SebastianThrun,MikeMontemerlo,HendrikDahlkamp,DavidStavens,Andrei
    Aron, JamesDiebel,PhilipFong,JohnGale,MorganHalpenny,GabrielHo mann,
    et al.Stanley:Therobotthatwonthedarpagrandchallenge. Journal of eld
    Robotics, pages661{692,2006.
    [35] ShiuHangTsang,EdwardGHoare,PeterSHall,andNigelJClarke.Automotive
    radar imageprocessingtopredictvehicletrajectory.In Image Processing,1999.ICIP
    99. Proceedings.1999InternationalConferenceon, pages867{870.IEEE,1999.
    [36] M. Xiao,Y.Yin,Y.Zhou,andS.Pan.Researchonimprovementofapriorialgorithm
    based onmarkedtransactioncompression.In 2017 IEEE2ndAdvancedInformation
    Technology,ElectronicandAutomationControlConference(IAEAC), pages1067{
    1071, 2017.
    [37] J. Yang,H.Bao,N.Ma,andZ.Xuan.Analgorithmofcurvedpathtrackingwith
    prediction modelforautonomousvehicle.In 2017 13thInternationalConferenceon
    Computational IntelligenceandSecurity(CIS), pages405{408,2017.
    [38] Xu Yuan,LucianBusoniu,andRobertBabuska.Reinforcementlearningforelevator
    control. IFACProceedingsVolumes, pages2212{2217,2008.
    [39] S. Zhao,Y.Chen,andJ.A.Farrell.High-precisionvehiclenavigationinurbanenvi-
    ronmentsusinganmem'simuandsingle-frequencygpsreceiver. IEEE Transactions
    on IntelligentTransportationSystems, pages2854{2867,2016.

    QR CODE
    :::