| 研究生: |
徐羽平 Yu-ping Hsu |
|---|---|
| 論文名稱: |
溪床礫石堆積在逕流作用下產生土石流之渠槽實驗 Experimental Study of debris flow induced by runoff at the gravel deposition riverbed |
| 指導教授: |
周憲德
Hsien-Ter Chou |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 71 |
| 中文關鍵詞: | 顆粒流 、土石流 、速度剖面 、潰壩 |
| 外文關鍵詞: | Velocity profile, Dam failure, Debris flow, Granular flow |
| 相關次數: | 點閱:13 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究進行之礫石型土石流之渠槽實驗,透過高速攝影機捕捉顆粒運動
之影像,及Matlab 程式進行顆粒流場之分析。
本研究以Voronoi Patterns 方法獲得流場內顆粒之速度向量,藉此分析顆
粒體的速度分佈及流動特性,實驗之特色在於堆積顆粒在上游受水的壓力
與潤滑作用發生群體運動,一直到產生穩定的顆粒流體化狀態的過程中,
在前端顆粒群體與水的混合狀態是不均勻的,且顆粒將集中於前方具有隆
起的前端,前後段的顆粒濃度也不相同,並與現地土石流具有類似之特徵。
在實驗中將改變上游供水速率和渠槽角度,分析上視和側視的速度剖面,
並與前人之實驗與數值結果相比較,顯示此種的顆粒運動接近於Bagnold
流變學的條件,並與礫石型土石流有相同的特性,進而比較水量與土石流
型態的關係。
In this study, we setup a flume experiment to simulate the initiation of stony
debris flow. We use high speed camera to capture the motion of particles, and
Matlab to analyzing the flow field.
We get the velocity vector in the flow field by Voronoi Patterns method. By
the method, we can analyze the velocity distribution and the flow
characteristics. In the experiment, the accumulated particles at upstream are
saturated water reduces the friction resistance, so the particles will move
entirely. The flow process is non-uniform, combining water and particles, in
the snout. The particles accumulated in the snout are not saturated and the
wave front becomes a bulb. The characteristic of bulbous wave is similar with
the field debris flow.
In the experiment, we change either the angle of flume or the flow rate to
analyze the velocity profiles from both top view and side view. Comparing
with the reference, the velocity profile can be described by Bagnold theory, and
then we also show the relationship between peak flow rate of the debris flow
and the type of dams and inflow.
1. Armanini, A., R. Capart, L. Fraccaroolo and M. Larcher (2005),
“Rheological Stratification in Experimental Free-Surface Flows of
Granular-Liquid Mixtures”, J. Fluid Mech.(2005), Vol. 532, pp.269-319.
2. Berzi., D., and J. T. Jenkins, (2009), “Steady Inclined Flows of
Granular-Fluid Mixtures”, J. Fluid Mech. (2009), Vol. 641, pp. 359-387.
3. Bi, W., R. Delannay, P. Richard, N. Taberlet and A. Valance (2005), “Twoand
Three-Dimensional Confined Granular Chute Flows: Experimental and
Numerical Results”, Journal of Physics: Condensed Matter,
doi:10.1088/0953-8984/17/24/006.
4. Capart, H., D. L. Young, Y. Zech (2002), “Voronoi Imaging Methods for the
Measurement of Granular Flows”, Experiments in Fluids, Vol. 32 (2002),
pp.121-135.
5. Cawthorn, C. J. (2008), “A Constitutive Law for Granular Flows: Predicting
the Appearance of Static Zones”, Smith-Knight/Rayleigh-Knight Essay.
6. Davis, T.R.H. (1990), “Debris-Flow Surges Experimental Simulation”,
Journal of Hydrology (N.Z.), Vol. 29,No. 1,(1990), pp.23-46.
7. Hsu, L., W. E. Dietrich and L. S. Sklar (2008), Experimental Study of
Bedrock Erosion by Granular Flows”, Journal of Geophysical Research,
VOL. 113, F02001, doi:10.1029/2007JF000778, 2008.
8. Jop, P., Y. Forterre and O. Pouliquen (2005), “Crucial Role of Sidewalls in
Granular Surface Flows: Consequences For the Rheology”, J. Fluid Mech.
(2005), Vol. 541, pp. 167-192.
5 7
9. Lamberti, A. (2006), “Experimental Analysis of the Impact of Dry
Avalanches on Structures and Implication for Debris Flows”, Journal of
Hydraulic Research Vol. 44, NO. 4(2006),pp. 522-534.
10. Midi, G. D. R (2004), “On Dense Granular Flows”, Eur. Phys. J. E, Vol.14,
pp.341-365.
11. Moriguchi, S., R. I. Borja, A. Yashima, K. Sawada (2009), “Estimating the
Impact Force Generated by Granular Glow on a Rigid Obstruction”, Acta
Geotechnica, 4:57–71. DOI 10.1007/s11440-009-0084-5.
12. Okuda, S., H. Suwa, K. Okunishi, K. Yokoyama, K. Nakano, and K. Ogawa
(1978), “Observation at Calley Kamikamihorizawa of Mt. Yakedake in
1977”, Annuals,DPRI,21B-1:277-296(in Japanese).
13. Paolo, A.D. (2006), “Experimental Analysis of the Segregation of Dry
Avalanches and Implications for Debris Flows”, Journal of Hydraulic
Research Vol. 44,No. 6(2006), pp.796-806.
14. Pouliquen, O. (1999), “Scaling Laws in Granular Flows Down Rough
Inclined Planes”, Physics of Fluids, Vol. 11, No. 3., pp. 542-548.
15. Scheafer, M., L. Bugnion, M. Kern, P. Bartelt (2010), “Position dependent
velocity profiles in granular avalanches”, Granular Matter, DOI
10.1007/s10035-010-0179-6.
16. Taberlet, N., P. Richard, A. Valance, W. Losert, J. M. Pasini, J. T. Jenkins
and R. Delannay (2003), “Superstable Granular Heap in a Thin Channel”,
Physical Review Letters, Vol 91, No. 26, DOI:10.1103/Phys Rev
Lett.91.264301.
17. 方啟守 (2004),「振動床於弱振動下顆粒分離機制研究」,中央大學機
械工程學系碩士論文,桃園。
5 8
18. 中華水土保持學會 (2006),「水土保持手冊」 ,工-1-22。