跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳騏超
Chi-Chao Chen
論文名稱: Linearized Focal-Plane Technique 與 Gerchberg -Saxton 相位回復演算法之比較
Comparison of Linearized Focal-Plane Technique and Gerchberg-Saxton Phase Retrieval Algorithm
指導教授: 梁肇文
Chao-Wen Liang
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 82
中文關鍵詞: 相位回復演算法波前檢測器傅立葉光學繞射
外文關鍵詞: Phase Retrieval Algorithm, Shack-Hartmann wavefront sensor, Fourier optics, Diffraction
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Shack-Hartmann Wavefront Sensor(SH-WFS)被廣泛使用於多種領域。其量測原理為透過微透鏡陣列對波前進行採樣,並透過光點的重心位置來獲得部分斜率,以此重建波前。使用重心法計算會以斜率代表整個Hartmann Spot的資訊,而忽略掉高頻波前所造成的Hartmann Spot形變。
    本論文以取得Hartmann Spot完整的相位資訊為目的,選擇使用相位回復演算法來達成該目標。分別分析了Gerchberg-Saxton Algorithm 與 Linearized Focal-plane Technique兩種相位回復演算法的優缺點,並將現實量測中所會遇到的狀況進行模擬分析,最後透過簡單的實驗來驗證兩種演算法的準確性,藉此比較出較為適合用來計算Hartmann Spot完整相位資訊的演算法。


    Shack-Hartmann Wavefront Sensor(SH-WFS) is widely used in various fields. The measurement principle is to sample the wavefront through a microlens array, and obtain a partial slope through the position of the center of gravity of the spot, so as to reconstruct the wavefront. Using the centroid method will represent the entire Hartmann Spot information as a slope, ignoring the Hartmann Spot deformation caused by the high-frequency wavefront.
    In order to obtain the complete phase information of Hartmann Spot, This proposes chooses to use the phase retrieval algorithm to achieve this goal. The advantages and disadvantages of the two phase retrieval algorithms, Gerchberg-Saxton Algorithm and Linearized Focal-plane Technique, are analyzed respectively, and the situations encountered in the actual measurement are simulated and analyzed. Finally, the two algorithms are verified through simple experiments. Therefore, a more suitable algorithm for calculating the complete phase information of Hartmann Spot can be compared.

    摘要 i Abstract ii 誌謝 iii 目錄 iv 圖目錄 vii 表目錄 xi 一、 緒論 1 1-1 研究背景 1 1-2 文獻回顧 2 1-3 研究動機 4 二、 原理 5 2-1 光學像差理論 5 2-1-1 波前像差與橫向色差 5 2-1-2 Seidel像差 6 2-1-3 Zernike多項式 8 2-2 相位回復演算法 11 2-2-1 Gerchberg-Saxton Algorithm(GSA)原理 14 2-2-2 Linearized Focal-plane Technique(LIFT)原理 18 2-2-3 過取樣(Oversampling) 19 2-3 Shack-Hartmann波前檢測器 21 2-3-1 量測原理 21 2-3-2 光點指派 (Spot Assignment) 22 2-3-3 光點質心計算 23 2-3-4 波前重建 24 三、 數值模擬實驗 26 3-1 演算法之模擬 26 3-1-1 GSA演算法之模擬 26 3-1-2 LIFT演算法之模擬 31 3-1-3 LIFT演算法線性區域分析 36 3-2 數值收斂問題探討 39 3-2-1 演算法應用範圍分析 39 3-2-2 演算法計算時間分析 41 3-2-3 雜訊對演算法之影響 44 3-2-4 影像切割對演算法之影響 47 3-2-5 PSF置中之影響 50 四、 光學實驗分析 53 4-1 實驗架構 53 4-2 GSA實際應用 56 4-3 LIFT實際應用 57 4-3-1 LIFT軸上像差之驗證 57 4-3-2 LIFT離軸像差之驗證 58 五、 結論與未來展望 61 5-1 實驗結論 61 5-2 未來展望 62 參考文獻 63

    〔1〕 D. Gabor, "A new microscopic principle," (in eng), Nature, vol. 161, no. 4098, p. 777, (1948).
    〔2〕 R. W. Gerchberg and A. S. W. O., "A practical algorithm for the determination of phase from image and diffraction plane pictures," Optik, vol. 35, pp. 237-250, (1972).
    〔3〕 J. R. Fienup, "Phase retrieval algorithms: a comparison," Applied Optics, vol. 21, no. 15, pp. 2758-2769, (1982).
    〔4〕 J. R. Fienup, "Phase retrieval with continuous version of hybrid input-output," in Frontiers in Optics, Tucson, Arizona, (2003).
    〔5〕 J. N. Cederquist, J. R. Fienup, C. C. Wackerman, S. R. Robinson, and D. Kryskowski, "Wave-front phase estimation from Fourier intensity measurements," Journal of the Optical Society of America A, vol. 6, no. 7, pp. 1020-1026, (1989).
    〔6〕 J. R. Fienup, J. C. Marron, T. J. Schulz, and J. H. Seldin, "Hubble Space Telescope characterized by using phase-retrieval algorithms," Applied Optics, vol. 32, no. 10, pp. 1747-1767, (1993).
    〔7〕 B. Dean, D. Aronstein, J. Smith, R. Shiri, and D. Acton, "Phase retrieval algorithm for JWST Flight and Testbed Telescope," Proc SPIE, vol. 6265, (2006).
    〔8〕 G. R. Brady and J. R. Fienup, "Nonlinear optimization algorithm for retrieving the full complex pupil function," Optics Express, vol. 14, no. 2, pp. 474-486, (2006).
    〔9〕 M. Guizar-Sicairos and J. R. Fienup, "Measurement of coherent x-ray focused beams by phase retrieval with transverse translation diversity," Optics Express, vol. 17, no. 4, pp. 2670-2685, (2009).
    〔10〕 S. T. Thurman, R. T. DeRosa, and J. R. Fienup, "Amplitude metrics for field retrieval with hard-edged and uniformly illuminated apertures," Journal of the Optical Society of America A, vol. 26, no. 3, pp. 700-709, (2009).
    〔11〕 B. H. Dean and C. W. Bowers, "Diversity selection for phase-diverse phase retrieval," Journal of the Optical Society of America A, vol. 20, no. 8, pp. 1490-1504, (2003).
    〔12〕 H. M. L. Faulkner and J. M. Rodenburg, "Movable Aperture Lensless Transmission Microscopy: A Novel Phase Retrieval Algorithm," Physical Review Letters, vol. 93, no. 2, p. 023903, (2004).
    〔13〕 M. Guizar-Sicairos and J. R. Fienup, "Phase retrieval with transverse translation diversity: a nonlinear optimization approach," Optics Express, vol. 16, no. 10, pp. 7264-7278, (2008).
    〔14〕 M. R. Teague, "Deterministic phase retrieval: a Green’s function solution," Journal of the Optical Society of America, vol. 73, no. 11, pp. 1434-1441, (1983).
    〔15〕 P. Mouroulis, "Geometrical optics and optical design. Oxford University Press.," pp. 227-238, (1996).
    〔16〕 V. Lakshminarayanan and A. Fleck, "Zernike polynomials: A guide," Journal of Modern Optics - J MOD OPTIC, vol. 58, pp. 1678-1678, (2011).
    〔17〕 J. W. Goodman, "ntroduction to Fourier Optics. W. H. Freeman. p. 63-79.," (2005).
    〔18〕 P. B. Osgood, "Lecture Notes for EE 261 The Fourier Transform and its Applications, Electrical Engineering Department Stanford University."
    〔19〕 R. W. S. Gerchberg, W. O, ""A practical algorithm for the determination of the phase from image and diffraction plane pictures" (PDF). Optik. 35: 237–246," (1972).
    〔20〕 G. Chanan, "Principles of Wavefront Sensing and Reconstruction," (2000).
    〔21〕 J. R. Fienup, "Reconstruction of a complex-valued object from the modulus of its Fourier transform using a support constraint," Journal of the Optical Society of America A, vol. 4, no. 1, pp. 118-123, (1987).
    〔22〕 S. Meimon, T. Fusco, V. Michau, and C. Plantet, "Sensing more modes with fewer sub-apertures: the LIFTed Shack Hartmann wavefront sensor," Optics Letters, vol. 39, no. 10, pp. 2835-2837, (2014).
    〔23〕 C. Plantet, S. Meimon, J. M. Conan, and T. Fusco, "Experimental validation of LIFT for estimation of low-order modes in low-flux wavefront sensing," Optics Express, vol. 21, no. 14, pp. 16337-16352, (2013).
    〔24〕 S. Meimon, T. Fusco, and L. M. Mugnier, "LIFT: a focal-plane wavefront sensor for real-time low-order sensing on faint sources," Optics Letters, vol. 35, no. 18, pp. 3036-3038, (2010).
    〔25〕 R. A. Gonsalves, "Small-phase solution to the phase-retrieval problem," Optics Letters, vol. 26, no. 10, pp. 684-685, (2001).
    〔26〕 J. Miao, D. Sayre, and H. N. Chapman, "Phase retrieval from the magnitude of the Fourier transforms of nonperiodic objects," Journal of the Optical Society of America A, vol. 15, no. 6, pp. 1662-1669, (1998).
    〔27〕 T. Latychevskaia, "Iterative phase retrieval in coherent diffractive imaging: practical issues," Applied Optics, vol. 57, no. 25, pp. 7187-7197, (2018).
    〔28〕 D. a. I. G. Malacara-Doblado, Hartmann, "Hartmann-Shack, and other screen tests. Optical Shop Testing," pp. 361-397, (2007).
    〔29〕 B. Platt and R. V. Shack, "History and principles of Shack-Hartmann wavefront sensing," Journal of refractive surgery, vol. 17 5, pp. S573-7, (2001).
    〔30〕 潘淑芳, "A Similarity-Guided Spots Sorting Method to Increase the Dynamic Range of a Shack Hartmann Sensor," 光電科學與工程學系, 國立中央大學, (2013).
    〔31〕 楊東諺, "聚焦位置與光波方向量測誤差評價與分析," 光電科學與工程學系, 國立中央大學, (2017).
    〔32〕 J. R. Fienup, "Phase-retrieval algorithms for a complicated optical system," Applied Optics, vol. 32, no. 10, pp. 1737-1746, (1993).
    〔33〕 C. Roddier and F. Roddier, "Combined approach to the Hubble Space Telescope wave-front distortion analysis," Applied Optics, vol. 32, no. 16, pp. 2992-3008, (1993).

    QR CODE
    :::