| 研究生: |
周䓵譽 Pin-yu Chou |
|---|---|
| 論文名稱: |
以單塊二維非週期性晶疇極化反轉鈮酸鋰於Nd:YVO4雷射同時達成電光Q調制及腔內和頻橘黃光產生 Monolithic two dimension aperiodically poled lithium niobate for simultaneous laser Q-switched and intracavity sum frequency generation in a dual wavelength Nd:YVO4 laser |
| 指導教授: |
陳彥宏
Yen-hung Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 73 |
| 中文關鍵詞: | 鈮酸鋰 、和頻轉換 、Q調制 |
| 外文關鍵詞: | Lithium niobate, Sum frequency generation, Q-switching |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鈮酸鋰具有良好的壓電、電光、鐵電、熱電以及非線性等特性,為一種具備多種光學特性的晶體,在本論文中利用超晶格結構的方法並透過模擬退火法優化來計算出二維非週期性結構,同時將布拉格光柵與和頻光柵整合於單一結構上。經由黃光微影以及高電場極化反轉的技術將二維非週期性結構製作於Z切鈮酸鋰晶片上,晶片尺寸為長3公分,寬3釐米,厚度500微米。利用此二維非週期性結構所提供的三個倒晶格向量,可以在Nd:YVO4雷射系統中以相同入射角度同時將1064 nm與1342 nm進行布拉格繞射以及和頻轉換,產生出脈衝式橘黃光雷射。
量測結果於Z方向外加電場350伏特時,1064 nm以及1342 nm的繞射效率分別為60 %和55 %。進一步將晶片放置於Nd:YVO4雷射系統中,透過電訊號調制,在攝氏70度時利用單一結構將1064 nm與1342 nm同時進行Q調制以及和頻轉換脈衝式橘黃光雷射輸出,在泵浦5.7瓦特下,可以得到脈寬為8.4 ns、頻寬0.4 nm、脈動雷射間擾動情形8.9 %以及尖端功率512瓦特之脈衝式橘黃光雷射。
Compact, high-repetition-rate pulsed visible coherent light sources are attractive for many applications, such as biomedicine, remote sensing, astronomy, and displays. The Q-switched all-solid-state laser technique can be a promising approach to attain such light sources. Moreover, due to the high nonlinearity and highly engineerable characteristics of the quasi-phase-matching(QPM) material, a device as simultaneous a Q-switch and wavelength converter can be realized in a two-dimensional aperiodically poled lithium niobate (APPLN).
In this thesis, we have designed and fabricated a unique 2D APPLN device integrating the functionalities of the Q-switch for two laser lines(1064nm and 1342 nm) simultaneously and sum frequency generator in a Nd:YVO4 laser system to generate pulsed yellow-orange laser, the such device was designed by aperiodic optical superlattice(AOS) technique and optimized by simulated annealing(SA) method.
In operation, 350 volts at repetition rate of 1 KHz drove the device, while the diffraction efficiencies of 1064 nm and 1342 nm of 60 % and 55 % were measured, respectively. At diode pump power of 5.7 watts, a yellow-orange pulse with pulse width of 8.4 ns, bandwidth of 0.4 nm, and peak power of 512 can be obtained, meanwhile, the peak-to-peak fluctuation of 8.9% was also found.
[1.1] “Physics Today”, Oct. 2007.
[1.2] J. A. Giordmaine, “Mixing of light beam in crystal”, Phys. Rev. Lett. 8, 1962.
[1.3] W. H. Zachariasen, Skr. Norske Vid-Ada., Oslo,Mat.Naturv, No.4, 1928.
[1.4] B. T. Matthias and J. P. Remeika, “Ferroelectricity in the illmenite structure”, Phys. Rev. 76, 1886.
[1.5] A. A. Ballman, “Growth of piezoelectric and ferroelectric materials by the Czochralski technique”, J.American Ceram. Soc. 48, 1965.
[1.6] 胡明理, “Zn:LiNbO3之晶體生長與其特性研究”, 中央大學, 2004.
[1.7] J. F. Huang, “Double-prism domain PPLN for simultaneous laser Q-switching and optical parametric oscillation in a Nd:YVO4 laser.”, Optics Express, Vol. 21, Issue 25, 2013.
[1.8] Y. H. Chen, “Tunable, pulsed multiline intracavity optical parametric oscillator using two-dimensional MgO:periodically poled lithium niobate-aperiodically poled lithium niobate”, Optics Letters, Vol. 38, Issue 18, 2013.
[1.9] (雷射雷達系統)。雷射雷達遙測實驗室。
取自http://140.115.30.31/~MPLAB/lidar/lisys.htm
[1.10] Copper vapor laser.
取自http://en.wikipedia.org/wiki/Copper_vapor_laser
[1.11] Dye laser. 取自http://en.wikipedia.org/wiki/Dye_laser
[1.12] Jirí Janousek, Sandra Johansson, Peter Tidemand-Lichtenberg, Shunhua Wang, Jesper L. Mortensen, Preben Buchhave and Fredrik Laurell, “Efficient all solid-state continuous-wave yellow-orange light source ” ,Optics Express, 13, 2005.
[1.13] K.W. Su, Y.T. Chang, Y.F. Chen, “Power scale-up of the diode-pumped actively Q-switched Nd:YVO4 Raman laser with an undoped YVO4 crystal as a Raman shifter”, Appl. Phys. B 88, 2007.
[1.14] Yung-Fu Chen, S. W. Tsai, “Diode-pumped Q-switched Nd:YVO4 yellow laser with intracavity sum-frequency mixing”, OPTICS LETTERS. Vol. 27, No.6, March 15, 2002.
[1.15] George A. Henderson, “A computational model of a dual-wavelength solid-state laser”, J. Appl. Phys. 68(11), 1990.
[1.16] W. K. Chang, Y. H. Chen, and J. W. Chang, “Pulsed orange generation optimized in a diode-pumped Nd:YVO4 laser using monolithic dual PPLN electro-optic Q switches”, OPTICS LETTERS. Vol. 35, No. 16, August 15, 2010.
[1.17] J. W. Chang, Q. H. Tseng, W. K. Chang, N. Hsu, Yen-Hung Chen, “APPLN Electro-Optic Bragg Q-switch in a Dual-Wavelength Nd:YVO4 Laser for Pulsed Orange Generation”, CLEO Technical Digest, 2012.
[1.18] 黃耀賢,「以單塊準相位匹配非週期及週期性晶體同時在ND:YVO4
雷射達成電光Q調製及腔內和頻橘黃光產生」,國立中央大學,碩士
論文,民國101年。
[2.1] Dieter H. Jundt, “Temperature-dependent Sellmeier Equation for the Index of Refraction, ne, in Congruent Lithium Niobate.”, Optics Letters, Vol. 22, No. 20, 1997.
[2.2] J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric.”, Physical Review, Vol. 127, 1962.
[3.1] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and
E. Teller, “Equation of State Calculation by Fast Computing Machines.”, Journal of Chemical Physics, 21(6), 1953.
[3.2] Y. Y. Lin, S. T. Lin, G. W. Chang, A. C. Chiang, and Y. C. Huang, Y. H. Chen “Electro-optic periodically poled lithium niobate Bragg modulator as a laser Q-switch.”, OPTICS LETTERS. Vol. 32, No. 5, March 1, 2007.
[4.1] Toshiyuki Inoue and Toshiaki Suhara, “Electro-optic periodically poled lithium niobate Bragg modulator as a laser Q-switch.”, IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 23, NO. 17, SEPTEMBER 1, 2011.