| 研究生: |
劉佳蓉 Jia-Rong Liu |
|---|---|
| 論文名稱: |
注意力分配及眼球運動準備歷程對於眼動潛伏時間與眼動軌跡的影響 What does the saccade curvature represent: attentional allocation or saccade programming? |
| 指導教授: |
阮啟弘
Chi-Hung Juan |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生醫理工學院 - 認知與神經科學研究所 Graduate Institute of Cognitive and Neuroscience |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 142 |
| 中文關鍵詞: | 注意力 、眼動 、眼動軌跡 |
| 外文關鍵詞: | curvature, saccade, attention |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘 要
在心理學的研究中已經有許多的實驗支持突現刺激( abrupt onset ) 可以快速且自動的吸引我們的注意力 ( Jonides, 1981; Yantis, 1984; Muller & Rabbitt, 1989 )。Theeuwes等人(1998,1999)更發現,突現刺激的出現不只可以吸引注意力更會吸引我們的眼睛直接轉移過去。注意力和眼球運動間的關係一直以來都被研究者們所關心。在過去的文獻中對於兩者間的關係主要有兩派不同的論點,一派是認為注意力和眼球運動間有密切的連結關係,伴隨有眼動的情形下可以增加對於目標物的辨識程度( Kowler et al., 1995;Hoffman & Subramanian, 1995;);以及Sheliga, Riggio and Rizzolatti, (1987,1994,1995)所提出的注意力前運動理論(premotor theory of attention)認為注意力和眼動系統同屬於一個神經機制,注意力的存在是為隨後所要執行的眼動做準備。另一派則認為注意力和眼動系統彼此間是可以分開獨立運作的(Posner, 1980; Posner and Dehaene, 1994; Hunt and Kingstone, 2003)。因此,本論文即是利用突現刺激可以同時吸引注意力和眼球運動的特性,來探查注意力和眼動間的關係。實驗中更操弄突現刺激在不同的時間點出現(SOA: 0,100,200,300ms),藉此觀察注意力和眼動系統間在時間向度上分離的可能性。
實驗結果發現,隨著突現刺激出現時間的早或晚,對於眼球運動有不同的影響效果。當突現刺激出現的時間較早時(SOA= 0,100ms),影響的可能是視知覺處理階段,使得眼動潛伏時間延長;而當突現刺激出現的時間較晚時(SOA= 200,300ms),影響的是可能是動作反應的階段,使得眼動軌跡彎曲度變大、眼球運動落點不準確。隨著突現刺激出現時間點的不同,會對注意力選擇和眼動系統產生兩種不同且互相獨立的干擾效果。因此我們認為視覺注意力和眼球運動系統彼此間在時間向度上是可以分離的。
Abstract
It is well-known that an abrupt onset distracter can capture attention and eye movements automatically (Theeuwes et al. 1998). A long-standing debate in the attentional research is the relationship between covert attention and saccadic eye movements. The premotor theory of attention proposes that visual attention and saccade programming are closely interlinked (Sheliga et al. 1995). However, Juan et al. (2004) recently challenged this prevailed theory by showing that the allocation of visual attention can be dissociated with saccade programming in time. In this study, following the same logic of Juan et al., the onset time of the abrupt onset in a visual search task is manipulated attempting to probe the functional dissociability of the oculomotor and the attentional systems in human.
The data revealed that the effect on the saccade latency and that on the saccade execution (e.g. curvature, saccade endpoints.) seem to have independent temporal function of the onset time of the AO. In the earlier AO onset time points (SOA: 0,100ms), within the pro-saccade paradigm, the AO can delay saccade latency (F(1,9)=25.224, P<0.01), but cannot influence the saccade curvature (F(1, 9)=0.066, P=0.803 >0.05). In contrast, when an AO was presented in the later time points (SOA: 200, 300 ms), the trajectories of saccades curve away from the abrupt onset location but the saccade latencies were not affected (F(1,9)=2.566, P>0.05).
Our data indicate that the saccade latency and the curvature are both affected by the presence of abrupt onset. But there is a little difference in the AO time function. In the early time (SOA= 0,100ms), the abrupt onset of colored-singleton can delay saccade latency but don’t affect the saccade curvature. When a color-singleton abrupt onset presented in the latter time (SOA= 200,300ms), the trajectories of saccades curve away from the abrupt onset location. We dissociate the attetntional selection and the saccade generation. The pattern of the result may indicate that visual attention (measured by the saccade latency) and saccade execution (measured by the saccade curvature) can be dissociated in a temporal domain.
參考文獻
Bichot, N. P., & Schall, J. D. (1999a). Saccade target selection in macaque during feature and conjunction visual search. Vis Neurosci, 16(1), 81-89.
Bichot, N. P., & Schall, J. D. (1999b). Effects of similarity and history on neuralDeubel, H., & Schneider, W. X. (1996). Saccade target selection and object recognition: evidence for a common attentional mechanism. Vision Res, 36(12), 1827-1837.
Doyle, M., & Walker, R. (2001). Curved saccade trajectories: voluntary and reflexive saccades curve away from irrelevant distractors. Exp Brain Res, 139(3), 333-344.
Ferrier, D., & Yeo, G. (1884). A Record of Experiments on the Effects of Lesion of Different Regions of the Cerebral Hemispheres. Philosophical Transactions of the Royal Society of London, 175, 479-564.
Findlay JM (1997) Saccade target selection during visual search.Vis Res 37:617–631
Gazzaniga, M.S., Ivry, R.B., & Mangun, G.R. (2002). Cognitive neuroscience.The biology of the mind. W.W. Norton & Company. New York. Press
Godijn, R. & Theeuwes, J. (2002). Oculomotor Capture and Inhibition of Return. Psychological Research, 66; 234-246
Godijn, R. & Theeuwes, J. (2002). Programming of exogenous and endogenous saccades: Evidence for a competitive integration model. Journal of Experimental Psychology. Human Perception and Performance 28 (5): 1039-1054
Hunt, A. R., & Kingstone, A. (2003). Covert and overt voluntary attention: linked or independent? Brain Res Cogn Brain Res, 18(1), 102-105.
Hunt, A.R., & Kingstone, A. (2003). Inhibition of return: Dissociating attentional and oculomotor components. J Exp Psychol Hum Percept Perform. 2003 Oct;29(5):1068-74
Jonides,J.(1981). Voluntary vs. automatic control over the mind''s eye''s movement. In J.B. Long & A.D.Baddelay(Eds.)),Attention and performance IX(pp.187-203). Hillsdale, NJ:Erlbaum
Juan, C. H., Shorter-Jacobi, S. M., & Schall, J. D. (2004). Dissociation of spatial attention and saccade preparation. Proc Natl Acad Sci U S A, 101(43), 15541-15544.
Kopp, B., Mattler, U., Goertz, R., & Rist, F. (1996). N2, P3 and the lateralized readiness potential in a nogo task involving selective response priming. Electroencephalogr Clin Neurophysiol, 99(1), 19-27.
Kowler, E., Anderson, E., Dosher, B., & Blaser, E. (1995). The role of attention in the programming of saccades. Vision Res, 35(13), 1897-1916.
Lavie, N. (1995). Perceptual load as a necessary condition for selective attention. J Exp Psychol Hum Percept Perform, 21(3), 451-468.
Ludwig, C. J. H., & Gilchrist, I. D. (2003). Target similarity affects saccade curvature
away from irrelevant onsets. Experimental Brain Research, 152, 60-69.
McPeek, R. M., Skavenski, A. A., & Nakayama, K. (2000). Concurrent processing of
saccades in visual search. Vision Research, 40(18), 2499-2516.
McPeek, R. M., Han, J. H., & Keller, E. L. (2003). Competition between saccade goals in the superior colliculus produces saccade curvature. J Neurophysiol, 89(5), 2577-2590.
McSorley, E., Haggard, P., & Walker, R. (2004). Distractor modulation of saccade
trajectories: spatial separation and symmetry effects. Experimental Brain
Research, 155, 320-333.
Muller, H. J., & Rabbitt, P. M. (1989). Reflexive and voluntary orienting of visual attention: time course of activation and resistance to interruption. J Exp Psychol Hum Percept Perform, 15(2), 315-330.
Posner, M. I. (1980). Orienting of attention. Q J Exp Psychol, 32(1), 3-25.
Posner, M. I., & Dehaene, S. (1994). Attentional networks. Trends Neurosci, 17(2), 75-79.
Quaia, C., Aizawa, H., Optican, L. M., & Wurtz, R. H. (1998). Reversible inactivation of monkey superior colliculus. II. Maps of saccadic deficits. J Neurophysiol, 79(4), 2097-2110.
Rizzolatti, G., Riggio, L., Dascola, I., & Umilta, C. (1987). Reorienting attention across the horizontal and vertical meridians: evidence in favor of a premotor theory of attention. Neuropsychologia, 25(1A), 31-40.
Sato, T. R., & Schall, J. D. (2003). Effects of stimulus-response compatibility on neural selection in frontal eye field. Neuron, 38(4), 637-648.
Sheliga, B. M., Riggio, L., & Rizzolatti, G. (1994). Orienting of attention and eye movements. Exp Brain Res, 98(3), 507-522.
Sheliga, B. M., Riggio, L., & Rizzolatti, G. (1995). Spatial attention and eye movements. Exp Brain Res, 105(2), 261-275.
Style, E.A. (1997). The Psychology of attention. Psychology Press
Thompson, K. G., Bichot, N. P., & Schall, J. D. (1997). Dissociation of visual
discrimination from saccade programming in macaque frontal eye field. J Neurophysiol, 77(2), 1046-1050.
Thompson, K. G., Hanes, D. P., Bichot, N. P., & Schall, J. D. (1996). Perceptual and
motor processing stages identified in the activity of macaque frontal eye
field neurons during visual search. J Neurophysiol, 76(6), 4040-4055.
Theeuwes, J., & Burger, R. (1998). Attentional control during visual search: the effect of irrelevant singletons. J Exp Psychol Hum Percept Perform, 24(5), 1342-1353.
Theeuwes, J. Olivers, C.N.L. & Chizk, C.L. (2005) Remembering a location makes the eyes curve away. Psychological Science, 16, 196-199.
Todd, J. T., & Gelder, P. V. (1979). Implications of a transient-sustained dichotomy for the measurement of human performance. J Exp Psychol Hum Percept Perform, 5(4), 625-638.
Van der Stigchel, S. & Theeuwes, J. (2005). Relation between saccade trajectories and spatial distractor locations. Cognitive Brain Research. 25, 579-582.
Walker, R., Deubel, H., Schneider, W. X., & Findlay, J. M. (1997). Effect of Remote
Distractors on Saccade Programming: Evidence for an Extended Fixation
Zone. J Neurophysiol, 78(2), 1108-1119.
Wu, S. C., & Remington, R. W. (2003). Characteristics of covert and overt visual orienting: Evidence from attentional and oculomotor capture. J Exp Psychol Hum Percept Perform, 29(5), 1050-1067.
Yantis, S., & Jonides, J. (1984). Abrupt visual onsets and selective attention: evidence from visual search. J Exp Psychol Hum Percept Perform, 10(5), 601-621.
Yantis, S., & Jonides, J. (1990). Abrupt visual onsets and selective attention: voluntary versus automatic allocation. J Exp Psychol Hum Percept Perform, 16(1), 121-134.