| 研究生: |
陳學奇 Hsueh-Chi Chen |
|---|---|
| 論文名稱: |
鋁電解電容器用鋁箔之研究 A STUDY ON THE FOIL OF ALUMINUMELECTROLYTIC CAPACITOR |
| 指導教授: |
歐炳隆
Bin-Lung Ou |
| 口試委員: | |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 138 |
| 中文關鍵詞: | 電容器 、鋁箔 、陰極箔 、陽極箔 、電化學腐蝕 、隧道式蝕孔 |
| 外文關鍵詞: | capacitance, aluminum foils, cathode foils, anode foils, electric etching, tunnel |
| 相關次數: | 點閱:15 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘 要
本論文探討鋁電解電容器用鋁箔,於添加不同含量的微量元素與不同製程後,對靜電容量的影響。內容依序分成陰極箔與高、低壓陽極箔等三大部份。利用穿透式電子顯微鏡( TEM )、掃瞄式電子顯微鏡( SEM )、X–光繞射、感應耦合電漿原子放射光譜儀( ICP-AES )、金相顯微鏡( OM )及電化學分析儀(potentiontats / galvanostats for electrochemical research)等儀器進行微結構、蝕刻組織觀察,並配合電化學的分析,探討電化學舉動、蝕刻條件與靜電容量的關係。
首先針對陰極箔,添加不同含量的微量元素銀,及有無安定化處理製程,其金相組織、微結構、織構所產生的變化,對於化學蝕刻所形成蝕孔的型態、大小及分佈情況等蝕刻組織的探討,進而分析對靜電容量的影響。結果發現銀添加量在0.2 wt % 以下時,會隨著含銀量的增加,有助於鋁箔基地中Al-Fe-Mn及Al-Fe-Mn-Si分散粒子的析出,而提昇表面化學蝕刻的腐蝕能力,導致陰極箔腐蝕表面積的增加,進而提高鋁電解電容器的靜電容量。但當銀含量超過0.2 wt %時,則會造成過度腐蝕產生孔合併現象,致使腐蝕表面積減少,而降低鋁電解電容器的靜電容量。結果並顯示安定化處理,能促進鋁箔再結晶的形成,於化學蝕刻後可有效增加陰極鋁箔表面積,因而有助於提升其靜電容量。
其次,針對高壓陽極箔添加含量不同之微量元素鉛,並施以直流電化學蝕刻製程後,觀察分析所形成蝕刻組織,其蝕孔的型態、大小及分佈等情況,以探討其對靜電容量的影響。結果發現有邊長約1.3 μm正四方型的蝕孔產生,在蝕孔內部表面有高低不平而具規則間隔0.12 μm之波狀皺紋的表面型態。結果並顯示添加微量鉛於高純度鋁箔,能有效地使鋁箔晶粒細化,而增加晶粒的數量。此現象造成了電化學蝕刻時蝕孔數量的增加,腐蝕的表面積因而增加,促使靜電容量也隨著提高。但當鉛含量超過0.3 ppm時,其靜電容量不再增加,反而快速降低。
同時,本研究也探討低壓鋁電解電容器用陽極鋁箔於添加不同銅含量,在交流電蝕後產生之腐蝕組織及靜電容量的影響。結果發現,低壓用鋁原箔經交流電蝕後之組織為海綿狀組織。隨著銅含量增加,其擴面效果及靜電容量均提昇。但是當銅含量添加超過49 ppm後,併孔現象趨於嚴重,且腐蝕界面處會由鋸齒型轉而傾向形成直線型,促使靜電容量有下降之趨勢。以定電流循環極化曲線電化學分析,得知隨著銅含量增加,電蝕量隨之加大重量損失率亦愈高。
Abstract
With the addition of the trace elements and various process treatments, in this paper, the static capacity was investigated for the aluminum electrolytic capacitor of aluminum foils. The contents were divided into three parts-cathode foils, dielectric and high (low) voltage anode foils, accordingly. The microstructure and etching morphology were observed and discussed by the applications of transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-Ray Diffraction, inductively coupled plasma atomic emission spectrometer (ICP-AES), metallurgical microscope, and electrochemical analytic system. Thus, the relationships among electrochemical behaviors, electric etching conditions and static capacity could be comprehended.
Firstly, the trace element of silver content was added for the cathode foils. With or without the stabilizing treatment, the variations for the metallurgical organization and microstructure were detected. After chemical etching, the form, size and distribution of etched holes were investigated so as to assess the variations of the static capacity. It was found that the silver content promoted the precipitations of Al-Fe-Mn and Al-Fe-Mn-Si, as well as enhanced etched surface. Thus, the static capacity effectively magnified. However, after the increment of silver content was up to 0.2%, the etched holes merged together due to over etching. This phenomenon caused the etched surface to lessen so as to reduce the static capacity. Also, the results showed that the stabilizing treatment could enhance re-crystallization for the aluminum foils. Therefore, the etched surface of the cathode foils effectively increased, a fact that increased the static capacity helpfully.
Secondly, after the addition of lead, aluminum foils of high voltage electrolytic capacitors proceeded with D.C. chemical etching. Thus, the form, size, and distribution of etched holes were observed to analyze the influence of the static capacitance. The results showed that the etched tunnels had square cross sections about 1.3μm per side. The inner tunnel sidewalls had a rough corrugated texture with regular ripples with a periodic interval of about 0.12μm. The addition of lead to high purity aluminum foils could effectively increase the number of grains and etched holes, which enhanced the etching of the surface as well as the static capacitance. However, the experiments showed that as the incremental addition of lead reached over 0.3ppm, the static capacitance reduced rapidly.
Also, in this study, different content of copper was added for the low-voltage anode foils of aluminum electrolytic capacitor. With A. C. chemical etching, the etched morphology and the influence of the static capacity were investigated. The results showed that the morphology of the low-voltage anode aluminum foils was spongy. As the content of copper increased, the expansive effect of the etched surface and the static capacity promoted. However, as the content of the copper was added over 49ppm, the phenomenon that the etched holes seriously merged together happened. Furthermore, the saw-tooth type of the etched surface boundary was inclined to be transferred to the line type, a fact that the static capacity reduced. By the electric chemical analysis of the polarised curve at fixed electric current circulation, the results showed that the more content of copper increased, the more serious extent of etching as well as the higher rate of the weight loss was obtained.
參 考 文 獻
1. 山口謙四郎, "電解電容器用高純度鋁箔", J. Jpn. Inst. Light Met., vol. 35, No. 11, pp. 365-371, (1985).
2. 小島浩一, 表面技術., ARS. 第12回, pp. 6-15, (1996).
3. 永田伊佐也;電解蓄電器評論, No. 2, pp. 31, (1977).
4. 永田伊佐也著, 陳永濱譯, "鋁箔乾式電解電容器", 日本蓄電器工業株式會社 pp. 184-190, (1985).
5. 永田伊佐也著, 陳永濱譯, "鋁箔乾式電解電容器", 日本蓄電器工業株式會社 pp. 183, (1985).
6. R.S. Alwitt, H. Uchi, T.R Beck and R.C. Alkire, "Electrochemical Tunnel Etching of Aluminum", J. Electrochem. Soc.:Electrochemical Science and Technology, vol. 131, No. 1, pp. 13-17, (1984).
7. K. Hebert and R. Alkire, "Growth and Passivation of Aluminum Etch Tunnels", J. Electrochem. Soc., Electrochemical Science and Technology, vol. 135, No. 9, pp. 2146-2157, (1988).
8. C. K. Dyer and R. S. Alwitt, "Surface Changes During A.C. Etching of Aluminum", J. Electrochem. Soc.:Electrochemical Science and Technology, vol. 128, No. 2, pp. 300-305, (1981).
9. J. H. Jeong, S. S. Kim, H. G. Kim, C. H. Chio, and D. N. Lee, " Electrochemical A C Etching of Aluminum Foils in Hydrochloric Acid Electrolytes", J. Materials Science Form., vol. 217-222, pp. 1565-1570, (1996).
10. E. Suganuma, Y. Tanno, T. Ito, A. Funakoshi, and K. Matsuki, "Surface Films Formed on Aluminum during AC Etching in Hydrochloric Acid Solution", J. Surface Fin. Soc. Jpn.:Met. Surface Technique, vol. 41, No. 10, pp. 1049-1053, (1990).
11. H.P. Hack, Metals Handbook, Vol.13, Corrosion 9th ed., ASM, Metals Park, OH, pp. 234, (1987).
12. 川島 浪夫, 中村 雄造, 西坂 基, J. Jpn. Inst. Light Met., vol. 21, pp. 54, (1956).
13. 日本輕金屬學會四十周年出版, "高純度アルミニウム", アルミ ニウムの組織と性質, pp. 159-170, (1991).
14. 川島 浪夫, 中村 雄造, 西坂 基, J. Jpn. Inst. Light Met., vol. 5, pp.121, (1952).
15. T. Suzuki, k. Arai, M. Shiga, and Y. Nakamura, Metall., "Impurity Effect on Cube Texture in Pure Aluminum Foils", Metall. Trans. A, vol. 16A, pp. 27-36, (1985).
16. K. Fukuoka and M. Kurahashi, "Effect of Si-Precipitate on the Capacitance of AC-Etching Al- Electrolytic Capacitor Cathode Foil", Sumitomo Light Metal Technical Reports, vol. 31, No. 4, pp. 10-17, (1990).
17. L. V. Alphen, P. Nauwen, and J. Slakhorts, "The Relation Between the Composition the Structure Parameters and the Etchability of Alloyed Al-Cathode Foils for Electrolytic Capacitors", Z. Metallkde, Bd 70, H3, pp. 158-167, (1979).
18. P. Laevers, H. Terryn, J. Vereecken, B. Kernig and B. Grzemba, "The Influence of Manganese on The AC Electrolytic Graining of Aluminum", Corrosion Sci., vol. 38, No. 3, pp. 413-429, (1996).
19. K. Arai and T. Suzuki and T. Atsumi, "Effect of Trace Elements on Etching of Aluminum Electrolytic Capacitor Foil", J. Electrochem. Soc.:Solid State Science and Technology, vol. 132, No. 7, pp. 1667-1670, (1985).
20. T. Suzuki, k. Arai, M. Shiga, and Y. Nakamura, "Impurity Effect on Cube Texture in Pure Aluminum Foils", Metall. Trans. A, vol. 16A, pp. 27-36, (1985).
21. Bakish, R., E. Z. Borders and R. Kornhaas, "On the Fundamentals of Etching High-Purity Aluminum Foil for Capacitor Use", J. Electrochem. Soc., vol. 109, pp. 791-795, (1995).
22. C. S. Lin, C. C. Chang and S. H. Hsieh, "Pit Growth of 1050 Aluminum Plates Electrograined in A Nitric Acid", J. Electrochem. Soc., vol. 147, No. 10, pp. 3647-3653, (1999).
23. 福岡 潔, 倉橋正晴, "高純度アルミニウム箔のトンルエッチンダ及にす微量インジウムの影響", Sumitomo Light Metal Technical Reports, vol. 34, No. 4, pp. 205-210, (1993).
24. E. Suganuma, Y. Tanno, I. Umetsu, A. Funakoshi, and K. Matsuki, "Factors Affecting the Formation of a Porous Layer during AC Etching of Aluminum in HCl Solution", J. Surface Fin. Soc. Jpn.:Met. Surface Technique, vol. 42, No. 9, pp. 928-932, (1991).
25. K. Fukuoka and M. Kurahashi, "Effect of Indium on the Etching Phenomena for High Purity Aluminum Foil", Sumitomo Light Metal Technical Reports, vol. 34, pp. 205-212, (1993).
26. Kenshiro YAMAGUCHI*, "High Purity Aluminum Foil for Electrolytic Capacitor", J. Jpn. Inst. Light Met., vol. 35, No. 11, pp. 365-371, (1985).
27. Bakish, R., E. Z. Borders and R. Kornhaas, "On the Fundamentals of Etching High-Purity Aluminum Foil for Capacitor Use", J. Electrochem. Soc., vol. 109, pp. 791-795, (1995).
28. J. C. Cuyas, J. D. Culcasi and C. L. Liorente, "Inhomogeneity of Rolling and Annealing Texture in Aluminum", light metal june, pp. 12-14, (1988).
29. W. Lin, G. C. Tu, C. F. Lin and Y. M. Peng, "The Effect of Lead Impurity on the DC-Etching Behavior of Aluminum Foil for Electrolytic Capacitor Usage", Corrosion Sci., vol. 38, pp. 889-907, (1996).
30. E. Makino, T. Yajima, T. shibata, Y. Tanno and E. Suganuma, "In situ Observation of Growing pits during Tunnel Etching of Aluminum", Mater. Trans. JIM., vol. 34, No. 9, pp. 796-800, (1993).
31. 福井 康司, 清水 遵, 牧本 昭一;J. Jpn. Inst. Light Met., vol. 40, No. 9, pp. 712-724, (1990).
32. N. Kanzaki, "Current Situation and Issues of Surface Treatment for Aluminum Electrolytic Capacitor", J. Surface Fin. Soc. Jpn.:Met. Surface Technique, Vol.48, No.10, pp.976-981, 1997.
33. T. Furu and E. Nes, "Growth Rates of Recrystallized Grains in Highly Deformed Commercial Purity Aluminum, an Experimental and Modeling Study", Mater. Sci. Forum, vol. 113, pp. 311-316, (1993).
34. 日本輕金屬學會四十周年出版, "高純度アルミニウム", アルミニウムの組織と性質, pp. 159-170, (1991).
35. Izaya Nagata, "Aluminum Foils for Electrolytic Capacitors from the Stand point of Capacitor Manufacturers", J. Jpn. Inst. Light Met., vol. 38, No. 9, pp. 552-557, (1988).
36. B. Major, "Texture, Microstructure, and Stored Energy Inhomogeneity in Cold Rolled Commercial Purity Aluminum and Copper", Materials Science and technology, vol. 8, pp. 510-515, june, (1992).
37. K. Brown and J. Inst, Met., vol. 100, pp. 341-345, (1972).
38. D. J. Lloyd and M. Ryvola, Microstr. Sci., vol. 12, pp. 577-585, (1984).
39. H. Hero and J. A. Mikkelsen, J. Inst. Met., vol. 97, pp. 18-22, (1969).
40. N. Hansen, Trans. AIME, vol. 245, pp. 2061-2068, (1969).
41. F. Schuh and M. Von Heimendahl, Z. Metallk., vol. 65, pp 346-352, (1974).
42. 特許公報; 昭51-34108, 昭38-21872;公開特許公報; 昭52-120364, 昭53-16857.
43. 柯賢文﹔腐蝕極其防制,1st ed,全華科技圖書股份有限公司, chap 7, (1995).
44. F. D. Bogar and R. T. Foley, "The Influence of Chloride Ion on Pitting of Aluminum", J. Electrochem. Soc., April, pp. 462-464, (1972).
45. Y. Tak, E. R. Henderson and K. R. Hebert, "Evolution of Microscopic Surface Topography during Passivation of Aluminum", J. Electrochem. Soc., vol. 141, No. 6, pp. 1446-1452, (1997).
46. T. C. Tan and D. T. Chin, "Effect of Alterating Voltage on the Pitting of Aluminum in Nitrate, Sulfate, and Chloride Solutions", Corrosion, vol. 45, No. 12, pp. 984-989, (1989).
47. K. Matsuki, K. Tachibana, M. Sugawara, A. Funakoshi, and E. Suganuma, "Study on AC Etching of Aluminum in Hydrochloric Acid Solution by Cyclic Chronotentiometry", J. Surface Fin. Soc. Jpn.:Met. Surface Technique, vol. 39, No. 12, pp. 34-40, (1988).
48. K. Matsuki, K. Tachibana, A. Funakoshi, and E. Suganuma, "Polarization Behavior of Aluminum in Hydrochloric Acid During AC Etching", J. Surface Fin. Soc. Jpn.:Met. Surface Technique, vol. 38, No. 6, pp. 38-42, (1987).
49. E. Suganuma, Yutan, T. Ito, A. Funakoshi, and K. Matsuki, "Surface Films Formed on Aluminum during AC Etching in Hydrochloric Acid Solution", J. Surface Fin. Soc. Jpn.:Met. Surface Technique, vol. 41, No. 10, pp. 1049-1053, (1990).
50. J. Flis and L. Kow Alczyk, "Effect of Sulphate Anions on Tunnel Etching of Aluminum", Journal of Applied Electrochemistry, vol. 25, pp. 501-507, (1995).
51. A. Hibino, M. Tamaki, Y. Watanabe and T. Oki, "The Effect Sulfuric Acid on Tunnel Etching of Aluminum in Hydrochloric Acid", Light Metal, vol. 42, pp. 440-445, (1992).
52. H. Zhong and T. Oki, "The Effect of Hydrochloric Acid Concentration and Solution Temperature on the Characteristics of Al Foil during AC Etching under Potential Control", J. Surface Fin. Soc. Jpn.:Met. Surface Technique, vol. 46, pp. 270-275, (1995).
53. 永田伊佐也著, 陳永濱譯, "鋁箔乾式電解電容器", 日本蓄電器工業株式會社 pp. 230-233, 1985.
54. 永田伊佐也著, 陳永濱譯, "鋁箔乾式電解電容器", 日本蓄電器工業株式會社 pp. 171-175, (1985).
55. C. F. Lin, and K. R. Hebert, "The Effect of Prior Cathodic Polarization on the Inititation of Pitting on Aluminum", J. Electrochem. Soc., vol. 137, No. 12, pp. 3723-3730, (1990).
56. E. Suganuma, Y. Tanno and A. Funakoshi, "Etching Layer Structure Produced by AC Etching of Aluminum in Hydrochloric Acid Solution", J. Surface Fin. Soc. Jpn.:Met. Surface Technique, vol. 51, No. 9, pp. 929-933, (2000).
57. G. E. Thompson and G. C. Wood, "The Effect of Alternating Voltage on Aluminum Electrodes in Hydrochloric Acid", Corrosion Science, vol. 18, pp. 721-746, (1978).
58. H. Zhong ,R. Ichins, M. Okids and T. Oki, "The Effect of Frequency on the Characteristics of Al Foil during AC Etching under Potential Control", J. Surface Fin. Soc. Jpn.:Met. Surface Technique, vol. 46, pp. 739-744, (1995).
59. N. Osawa, K. Fukuoka and Z. Tanobe, "The Etching Behavior of Pit Initiation and Tunnel Growth of Aluminum Foil for Electrolytic Capacitors during Early Stage of D.C. Etching", Sumitomo Light Metal Technical Reports, vol. 32, pp. 124-131, (1991).
60. E. Makino, K. Takeda, T. Sato, E. Suganuma, T. Ito and Y. Tanno, "Direct Current Etching of Aluminum in NaCl/NaNo3 Mixed Electrolytes", J. Surface Fin. Soc. Jpn.:Met. Surface Technique, vol. 37, No. 13, pp. 763-768, (1986).
61. R. S. Alwitt, T. R. Beck and K. Hebert, "Electrochemical Tunnel Growth in Aluminum", NACE-9 Advances in Localized Corrosion, pp. 145-152, (1987).
62. D. Goad, "Tunnel Morphology in Anodic Etching of Aluminum", J. Electrochem. Soc., vol. 144, No. 6, pp. 1965-1971, june (1997).
63. K. Hebert and R. Alkire, "Growth Rates of Aluminum Etch Tunnels", J. Electrochem. Soc., Electrochemical Science and Technology, vol. 135, No. 10, pp. 2447-2452, (1988).
64. J. H. Jeong, C. H. Chio, and D. N. Lee, "A Model for the〈100〉Crystallographic Tunnel Etching of Aluminum", J. Mater. Sci., vol.31 pp. 5811-5815, (1996).