跳到主要內容

簡易檢索 / 詳目顯示

研究生: 白宏益
Hung-I Pai
論文名稱: 腦磁源之定位與源強度還原的若干方法
Some procedures for solving the Magnetoencephalography inverse problem
指導教授: 李弘謙
H.C. Paul Lee
口試委員:
學位類別: 博士
Doctor
系所名稱: 理學院 - 物理學系
Department of Physics
畢業學年度: 96
語文別: 中文
論文頁數: 105
中文關鍵詞: 資訊處理法磁腦圖最大熵法
外文關鍵詞: information process, Maximum entropy, MEG, Magnetoencephalography
相關次數: 點閱:5下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 腦磁圖 (Magnetoencephalograph , MEG) 提供一個做非侵入式觀察人腦皮質上神經元集之間活動的測量。具有所有腦影像技術裡最高的毫秒的時間解析度。但是由於可能的神經源 (訊號源) 的數目遠大於MEG探測器的數目,所以無法直接從MEG的資料反推回去發出訊號源的精確的位置和強度,這又稱為病態的反問題 (ill-posed inverse problem)。再加上全部訊號源都被塞在半徑只有大約10公分的頭殼裡,更加難從外面的探測器的資料分辨發出訊號的位置。但是利用一些和腦相關的先前知識 (prior) 和腦皮質結構上的限制,我們發展出一套資訊處理的方法,可以估算出最有可能的發出訊號的源的位置。這程序包含對先前知識(prior) 的位置做處理的部分:分群、前向式過濾法 (forward filtering) 、後向式過濾法 (backward filtering)。還有對源的強度做微調的部分。
    從跟聽覺有關的一小塊皮質做模擬實驗的開始。大小是長40毫米,寬15毫米。模擬其中一個小區域的激發。當限制住空間源的分佈和縮小假陽性 (false positive),我們的方法計算出的陽性 (P) 區域和真實激發的區域 (T) 的誤差是毫米大小的尺度。


    Magnetoencephalography (MEG) provides dynamic spatial-temporal insight of neural activities in the cortex. Because the number of possible sources is far greater than the number of MEG detectors, the proposition to localize sources directly from MEG data is notoriously ill-posed. Here we develop an approach based on data processing procedures including clustering, forward and backward filtering, and the method of maximum entropy. We show that taking as a starting point the assumption that the sources lie in the general area of the auditory cortex (an area of about 40 mm by 15 mm), our approach is capable of achieving reasonable success in pinpointing active sources concentrated in an area of a few mm''s across, while limiting the spatial distribution and number of false positives.

    壹、背景與動機介紹 1 一、 腦的影像實驗技術 2 (一) 磁振造影 (MRI) 2 (二) 功能性磁振造影 (fMRI) 5 (三) 腦磁圖 (MEG) 6 二、 大腦 9 三、 動機 11 貳、 MEG在腦科學研究中所面臨問題和問題解決的邏輯 12 一、 兩個問題 12 (一) 病態的反問題 (ill-posed inverse problem) 12 (二) 噪音的問題 13 二、 問題解決背後的邏輯 16 (一) 縮小可能解的解空間大小 16 (二) 最佳化的引入腦功能相關的MEG資訊來鎖定真正解 17 參、 腦模型 19 一、 腦模型的建立 19 二、 人造的磁場資料 23 (一) MEG儀器資訊 23 (二) 人造MEG資料的產生 25 (三) 計算結果分析- ROC法 27 肆、 資訊處理法 29 一、 分群和排序 (clustering and Sorting) 31 二、 前向式過濾法 (Forward filtering) 37 三、 後向式過濾法 (Backward filtering) 38 四、 最大熵法 (Maximum Entropy) 40 (一) 限制條件 42 (二) 最小偏差機率分佈 43 (三) 高斯參考機率分佈 46 (四) 疊帶法 47 五、 方法檢驗 53 伍、結果 56 一、 測試1 56 (一) 發火位置一 56 (二) 計算結果分析 57 二、 測試2 61 (一) 發火位置二 61 (二) 計算結果分析 62 三、 測試3 65 (一) 發火位置三 65 (二) 計算結果分析 66 四、 ME為基礎的方法和MNLS比較分析探討 68 陸、 結論與討論 72 一、 資訊處理法的建立 72 二、 檢驗和適用性 73 三、 未來方向和展望 74 柒、附錄 76 一、 取得MRI的資料 76 二、 磁振造影 (MRI)資料處理 76 (一) 使用 BrainSuite2 77 (二) 如何使用MatLab減少構成腦皮質的三角形個數 81 (三) 做出最終腦皮質的程序 82 三、 腦皮質的繪圖 82 (一) 一個例子 85 四、 多維空間的極大化 89 捌、 參考文獻 92

    Amblard, C., E. Lapalme, et al. (2004). Biomagnetic source detection by maximum entropy and graphical models. 51: 427-442.
    Arthur, R. M. and D. B. Geselowitz (1970). Effect of inhomogeneities on the apparent location and magnitude of a cardiac current dipole source. 17: 141-6.
    Baillet, S., J. C. Mosher, et al. (2001). Electromagnetic brain mapping. 18: 14-30.
    Bandettini, P. A., A. Jesmanowicz, et al. (1993). Processing strategies for time-course data sets in functional MRI of the human brain. 30: 161-73.
    Bandettini, P. A., E. C. Wong, et al. (1992). Time course EPI of human brain function during task activation. 25: 390-7.
    Belliveau, J. W., D. N. Kennedy Jr, et al. (1991). Functional mapping of the human visual cortex by magnetic resonance imaging, AAAS. 254: 716.
    Blamire, A. M., S. Ogawa, et al. (1992). Dynamic mapping of the human visual cortex by high-speed magnetic resonance imaging, JSTOR. 89: 11069-11073.
    Brent, R. P. (2002). Algorithms for Minimization Without Derivatives, Courier Dover Publications.
    Buxton, R. B. (2002). Introduction to Functional Magnetic Resonance Imaging: Principles and Techniques, Cambridge University Press.
    Caticha, A. (2003). Relative Entropy and Inductive Inference.
    Cocosco, C. A., V. Kollokian, et al. (1997). BrainWeb: Online Interface to a 3DMRI Simulated. 5: S425.
    Cohen, D. (1968). Magnetoencephalography: Evidence of Magnetic Fields Produced by Alpha-Rhythm Currents. 161: 784-786.
    Damadian, R. V. (1977). APPARATUS AND METHOD FOR DETECTING CANCER IN TISSUE.
    DeLong, E. R., D. M. DeLong, et al. (1988). Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach, JSTOR. 44: 837-845.
    Fawcett, T. (2004). ROC graphs: Notes and practical considerations for researchers. 31.
    Fletcher, R. (1987). Practical methods of optimization, Wiley-Interscience New York, NY, USA.
    Freeman, W. J. (1975). Mass Action in the Nervous System, Academic Press, New York.
    Galassi, M. and J. Davies (2005). Gnu Scientific Library: Reference Manual, Bristol: Network Theory.
    Gavit, L., S. Baillet, et al. (2001). A multiresolution framework to MEG/EEG source imaging. 48: 1080-1087.
    Hamalainen, M., R. Hari, et al. (1993). Magnetoencephalography—theory, instrumentation, and applications to noninvasive studies of the working human brain, APS. 65: 413-497.
    Hinshaw, W. S. and A. H. Lent (1983). An introduction to NMR imaging: From the Bloch equation to the imaging equation. 71: 338-350.
    Huang, N. E., S. R. Long, et al. (1996). The mechanism for frequency downshift in nonlinear wave evolution, Academic Press. 32: 59-117.
    Hyvarinen, A. and E. Oja (2000). Independent component analysis: algorithms and applications. 13: 411-30.
    Kado, H., M. Higuchi, et al. (1999). Magnetoencephalogram systems developed at KIT. 9: 4057-4062.
    Kaufman, L. and P. J. Rousseeuw (1990). Finding groups in data. an introduction to cluster analysis.
    Kohonen, T. (1988). An introduction to neural computing. 1: 3-16.
    Kumar, A., D. Welti, et al. (1975). Imaging of macroscopic objects by NMR Fourier zeugmatography, Springer. 62: 34-34.
    Kwong, K. K., J. W. Belliveau, et al. (1992). Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation, National Academy of Sciences. 89: 5675.
    Lapalme, E., J. M. Lina, et al. (2006). Data-driven parceling and entropic inference in MEG, Elsevier. 30: 160-171.
    Lauterbur, P. C. (1973). Image formation by induced local interactions: examples employing nuclear magnetic resonance. 242: 190-191.
    Moonen, C. T. W. and P. A. Bandettini (1999). Functional MR angiography using in-flow and phase-contrast MR acquisition techniques. Berlin, Springer.
    Nenonen, J., C. J. Purcell, et al. (1991). Magnetocardiographic functional localization using a current dipolein a realistic torso. 38: 658-664.
    Nunez, P. L. and R. B. Silberstein (2000). On the Relationship of Synaptic Activity to Macroscopic Measurements: Does Co-Registration of EEG with fMRI Make Sense?, Springer. 13: 79-96.
    Ogawa, S., D. W. Tank, et al. (1992). Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging, JSTOR. 89: 5951-5955.
    Okada, Y. (1983). Neurogenesis of evoked magnetic fields: 399–408.
    Pai, H.-I. (2008). "sensors information." from http://www.pooh.phy.ncu.edu.tw/~meg/.
    Pascual-Marqui, R. D., C. M. Michel, et al. (1994). Low resolution electromagnetic tomography: a new method for localizing electrical activity in the brain. 18: 49-65.
    Sarvas, J. (1987). Basic mathematical and electromagnetic concepts of the biomagnetic inverse problem. 32: 11-22.
    Scherg, M. and D. Von Cramon (1986). Evoked dipole source potentials of the human auditory cortex. 65: 344-60.
    Seitz, R. J., C. Bohm, et al. (1990). Accuracy and precision of the computerized brain atlas programme for localization and quantification in positron emission tomography. 10: 443-57.
    Shattuck, D. W. and R. M. Leahy (2002). BrainSuite: An automated cortical surface identification tool, Elsevier. 6: 129-142.
    Shore, J. and R. Johnson (1980). Axiomatic derivation of the principle of maximum entropy and the principle of minimum cross-entropy. 26: 26-37.
    Shore, J. E. and R. W. Johnson (1981). Principles of cross-entropy minimization. 27: 472–482.
    Skilling, J. (1988). The axioms of maximum entropy. 1: 173–187.
    Skilling, J. (1989). Maximum Entropy and Bayesian Methods in Science and Engineering, Dordrecht: Kluwer.
    Smith, C. R. and W. T. Grandy (1985). Maximum-Entropy and Bayesian Methods in Inverse Problems, D Reidel Pub Co.
    Wang, J. Z. (1993). Minimum-norm least-squares estimation: magnetic source images for aspherical model head. 40: 387-396.
    Zimmerman, J. E., P. Thiene, et al. (2003). Design and Operation of Stable rf-Biased Superconducting Point-Contact Quantum Devices, and a Note on the Properties of Perfectly Clean Metal Contacts, AIP. 41: 1572.

    QR CODE
    :::