跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林家瑞
Chia-Jui Lin
論文名稱: 以液相層析質譜儀分析六溴環十二烷之方法開發及研究
Determination of the Flame Retardant Hexabromocyclododecane in Sediments by Liquid Chromatography-Mass Spectrometry
指導教授: 丁望賢
Wang-Hsien Ding
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 化學學系
Department of Chemistry
畢業學年度: 95
語文別: 中文
論文頁數: 91
中文關鍵詞: 大氣壓力光游離法索氏萃取法電灑法六溴環十二烷加壓溶液萃取法
外文關鍵詞: soxhlet, ASE, ESI, hexabromocyclododecane, APPI
相關次數: 點閱:8下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 六溴環十二烷(Hexabromocyclododecane, HBCD)是目前工業上最常用的添加型耐燃劑之一。六溴環十二烷具有價格便宜,效果良好以及使用方便的特色,因此被廣泛的添加於電子產品及紡織品的塑膠中,作為防火耐燃劑。過去的研究顯示,因為有明顯的生物累積效應,它的濃度在食物鏈越末端會越高。過去的毒性研究則顯示六溴環十二烷具有干擾生物體內分泌的特性,以及可能為人體致癌物。由於過去台灣還沒有針對環境中六溴環十二烷相關研究,因此,有必要發展一套監測環境中六溴環十二烷濃度的方法。我們的實驗目的即是開發一套檢測固態樣品中,六溴環十二烷含量的檢測方法。
    在實驗的第一部份,我們成功的分離了三種立體異構物,並且確定了三種異構物的滯留時間,層析峰的半高寬約在0.2到0.3分鐘之間。第二部分我們比較了大氣壓力光游離介面(Atmospheric Pressure Photo Ionization, APPI)與電灑游離介面(Electrospray Ionization, ESI),發現兩種游離介面都可以用來進行六溴環十二烷的游離工作。大氣壓力光游離介面有較好的線性範圍以及較不容易受到基質干擾,但是即使以加入正辛烷作為摻雜劑的方式提昇大氣壓力光游離介面的訊號強度,電灑游離介面依然有遠低於大氣壓力光游離介面的偵測極限 (limit of detection, LOD)。接下來我們比較了加壓溶液萃取法(pressure liquid extraction, PLE)與索氏萃取法(soxhlet extraction, SE)的萃取效果,在最佳化的萃取條件下,對三種立體異構物加壓溶液萃取的回收率均高於58 %,相對標準偏差值(RSD)介於1.9%-5.6%之間。對三種立體異構物索氏萃取的回收率均高於 61.8%,相對標準偏差值(RSD)介於2.7%-14.9%之間。兩種萃取方法均能有效的萃取樣品中的六溴環十二烷,但由於加壓溶液萃取較節省溶劑以及萃取時間,因此為較好的萃取方法。我們也單獨測定了淨化步驟的回收率,對於三種立體異構物淨化步驟的回收率均大於86%,相對標準偏差值(RSD)介於2.7%-6.3%.之間,顯示淨化步驟對回收率的損失只有很小的影響。最後,我們將標準品加入真實樣品中,可以得到可接受的回收率,證明我們的方法的確適用於樣品中六溴環十二烷的檢測。然而在已測試的底泥樣品中,我們還沒有測到六溴環十二烷的存在。


    HBCD is one of the important class of additive flame retardants in commerce. Because it is a cheap, reliable compoundd and is easy to be used by adding directly, HBCD is widely used in the plastic of electric products and textile industries as a flame retardant. Because of it’s lipophilic property and structure stability, it behaves remarkable bioaccumulation. Previous studies have shown that concentrations of HBCD are rising alone the food chain. Some toxic researchs heve shown that it has the risk to effect endocrine system of animal or it may be as a carcinogen. Consequently, it is necessary to develop analytical methods for routinely determining the levels of HBCD in Taiwan. The purpose of this study is to develop a reliable method for routinely determining the levels of hexabromocyclododecane (HBCD) in solid samples.
    In the first part of our study, we separated the three disastereomers and identify each of their retention time. The width of the half peak high is about 0.2-0.3 minutes. In the second part, we compared the ionization ability of Atmospheric Pressure Photo Ionization (APPI) and Electrospray Ionization (ESI) for HBCD. The results show that the two ion sources are both practicable for the ionization of HBCD. APPI shows a better linear dynamic range and less influences from matrix effect. However, ESI shows a much lower limit of detection (LOD). In the third part, we compared two extraction methods of soxhlet extraction (SE) and pressure liquid extraction (PLE). In optimized conditions, the recovery of PLE is more than 58%, RSD is between 1.9%-5.6%. The recovery of SE is more than 61.8%, RSD is between 2.7%-14.9%. Both of them are practicable in HBCD analysis. We also test the recovery of the clean up step. The recovery of acidic silica column is more than 86%, RSD is between 2.7%-6.3%. It means that the clean up step will not reduce the recovery of extraction dramatically. At last we proved that our method is practicable by spiking standard to sediment to get an acceptable recovery. But we still did not detect any hexabromocyclododecane in sediment samples yet.

    中文摘要 ---------------------------------------------- I 英文摘要 -------------------------------------------- III 目 錄 ---------------------------------------------- V 表 目 錄 --------------------------------------------- IX 圖 目 錄 ---------------------------------------------- X 第一章 前言 ------------------------------------------- 1 1.1 研究源起 ------------------------------------------- 1 1.2 研究目標 ------------------------------------------- 5 第二章 文獻回顧 --------------------------------------- 7 2-1 耐燃劑 --------------------------------------------- 7 2-1-1 耐燃劑簡介 --------------------------------------- 7 2-1-2 耐燃劑之分類 ------------------------------------- 8 2-1-3 溴化耐燃劑簡介 ----------------------------------- 9 2-1-4 溴化耐燃劑的毒性與管制 -------------------------- 10 2-2 六溴環十二烷 -------------------------------------- 14 2-2-1 六溴環十二烷簡介 -------------------------------- 14 2-2-2 六溴環十二烷之性質 ------------------------------ 15 2-2-3 六溴環十二烷之毒性 ------------------------------ 18 2-2-4 六溴環十二烷檢測之相關研究 ---------------------- 18 2-3 萃取法 -------------------------------------------- 23 2-3-1 加壓溶液萃取法 ---------------------------------- 23 2-3-2 索氏萃取法 -------------------------------------- 26 2-4 液相層析質譜儀 ------------------------------------ 28 2-4-1 液相層析質譜儀簡介 ------------------------------ 28 2-4-2 電灑游離界面 ------------------------------------ 29 2-4-3 大氣壓力光游離界面 ------------------------------ 31 2-4-4 離子阱質譜儀 ------------------------------------ 37 第三章 實驗步驟與樣品分析 ---------------------------- 40 3-1 實驗藥品與儀器設備 -------------------------------- 40 3-1-1 實驗藥品 ---------------------------------------- 40 3-1-2 儀器設備 ---------------------------------------- 42 3-2 實驗步驟 ------------------------------------------ 44 3-2-1 標準品的配製 ------------------------------------ 44 3-2-1.1 待測物標準品的製備 ---------------------------- 43 3-2-1.2 內標準品的製備 -------------------------------- 44 3-2-2 層析分離 ---------------------------------------- 45 3-2-3 APPI與ESI游離條件最佳化 ------------------------- 46 3-2-4 加壓溶液萃取步驟 -------------------------------- 46 3-2-5 傳統索氏萃取步驟 -------------------------------- 47 3-2-5 真實樣品的萃取與淨化 ---------------------------- 47 第四章 結果與討論 ------------------------------------ 49 4-1 層析分離 ------------------------------------------ 49 4-1-1 最佳化的層析條件 -------------------------------- 49 4-1-2 動相組成的影響 ---------------------------------- 51 4-2 電灑游離界面 -------------------------------------- 54 4-2-1 質譜圖 ------------------------------------------ 54 4-2-2 二次質譜圖 -------------------------------------- 54 4-2-3 最佳化的游離條件 -------------------------------- 57 4-2-4 偵測極限 ---------------------------------------- 57 4-3 大氣壓力光游離界面 -------------------------------- 60 4-3-1 質譜圖 ------------------------------------------ 60 4-3-2 二次質譜圖 -------------------------------------- 60 4-3-3 摻雜劑 ------------------------------------------ 63 4-3-4 最佳化的游離條件 -------------------------------- 64 4-3-5 偵測極限 ---------------------------------------- 66 4-4 加壓溶液萃取法 ------------------------------------ 69 4-4-1 萃取溶劑 ---------------------------------------- 69 4-4-2 萃取溫度 ---------------------------------------- 70 4-4-3 靜態萃取時間 ------------------------------------ 72 4-4-4 動態萃取體積 ------------------------------------ 73 4-4-5 最佳化萃取條件 ---------------------------------- 74 4-5 索氏萃取 ------------------------------------------ 76 4-5-1 萃取溶劑 ---------------------------------------- 76 4-5-2 萃取頻率 ---------------------------------------- 77 4-5-3 萃取時間 ---------------------------------------- 78 4-5-4 最佳化萃取條件 ---------------------------------- 79 4-6 真實樣品 ------------------------------------------ 81 4-6-1 基質干擾 ---------------------------------------- 81 4-6-2 淨化步驟 ---------------------------------------- 82 4-6-3 游離介面比較 ------------------------------------ 83 4-6-4 萃取方法比較 ------------------------------------ 85 第五章 結論與建議 ------------------------------------ 86 5.1 結論 ---------------------------------------------- 86 參考文獻 --------------------------------------------- 87

    一、 中文部分
    郝龍斌:導正拋棄型消費型態,促進資源永續利用,環保署專文,
    行政院環境保護署署長,民國九十一年。
    高振山、劉志仁:溴系阻燃劑國際管制概況探討,民國九十三年。
    郭瀚文:以氣相及液相層析質譜儀分析具荷爾蒙效應物質之方法
    開發,碩士論文,國立中央大學化學研究所,民國九十三年。
    郭瀚文、丁望賢:液相層析質譜儀中大氣壓力光游離法之原理與
    應用,科儀新知,第26卷2期,第81-97頁,民國九十三年。
    廖寶琦:電噴灑離子化
    鍾尹如:以質譜技術對環境中多溴連苯醚檢測之方法開發與應
    用,碩士論文,國立中央大學化學研究所,民國九十五年。
    二、 英文部分
    Alaee M.; Arias P.; Sjodin A.; Bergman A., An overview of
    commercially used brominated flame retardants,their applications,
    their use patterns in different countries/regions and possible modes of
    release, Environ. Internal., 2003, 29, 683– 689
    Arsenault G.; Chittim B.; McAlees A.; McCrindle R., Nuclear
    magnetic resonance spectral characterization and semi - empirical
    calculations of conformations of α- and γ- 1,2,5,6,9,10-
    hexabromocyclododecane, Chemosphere, 2007, 67, 1684–1694
    Barontini F.; Cozzani V.; Petarca L., Thermal stability and
    decomposition products of hexabromocyclododecane., Ind. Eng.Chem.
    Res., 2003, 40, 3270-3280.
    Budakowski W.; Tomy G., Congener-specific analysis of
    hexabromocyclododecane by high-performance liquid
    chromatography/electrospray tandem mass spectrometry,Rapid
    Commun. Mass Spectrom., 2003, 17, 1399-1404
    Covaci A.; Gerecke A. C.; Law R. J.; Voorspoels S.; Kohler M.; Heeb
    N. V.; Leslie H.; Allchin C. R.; Boer J. D.,
    Hexabromocyclododecanes (HBCDs) in the Environment and
    Humans: A Review., Environ. Sci. Technol., 2006, 40, 3679-3689
    Darnerud P. O., Toxic effects of brominated flame retardants in man
    and in wildlife, Environ. Internal., 2003, 29, 841– 853
    DIONEX Technical Note 208
    Dodder N. G.; Peck A. M.; Kucklick J. R.; Sander L. C., Analysis of
    hexabromocyclododecane diastereomers and enantiomers by liquid
    chromatography/tandem mass spectrometry: Chromatographic
    selectivity and ionization matrix effects, J. Chromatogr. A, 2006, 1135,
    36-42.
    Eriksson P.; Fischer C.; Wallin M.; Jakobsson E.; Fredriksson A.,
    Impaired behaviour, learning and memory, in adult mice neonatally
    exposed to hexabromocyclododecane (HBCD) Environ. Toxicol.
    Pharm., 2006, 21, 317–322
    Groweiss A.; Hermolin J.; Goldberg I., Bromination of
    1Z,5E,9E-cyclododecatriene—a chemists perspective, Adv.
    Organobromine Chem.,1991, 61–67.
    Hanold K. A.; Fischer S. M.; Cormia P. H.; Miller C. E.; Syage J. A.,
    Atmospheric Pressure Photoionization. 1. General Properties for
    LC/MS, Anal. Chem., 2004, 76, 2842-2851
    Hoffmann E.; Stroobant V., Mass spectrometry(second edition, 1999)
    Hoh E.; Hites R. A., Brominated Flame Retardants in the Atmosphere
    of the East-Central United States, Environ. Sci. Technol., 2005, 39,
    7794-7802
    Hunziker R. W.; Gonsior S.; MacGregor J. A.; Desjardins D.; Ariano
    J.; Friederich, U., Fate and effect of hexabromocyclododecane in the
    environment, Organohalogen Compd., 2004,66, 2300-2305.
    Janak K.; Covaci A.; Voorspoels S.; Becher G., Enantiomer-specific
    accumulation of HBCD in fish from the Western Scheldt Estuary,
    Organohalogen Compd., 2004, 66, 3913-3917.
    Janak K.; Covaci A.; Voorspoels S., Distribution of
    Hexabromocyclododecane Diastereomers in Marine Biota in the
    Western Scheldt Estuary, Organohalogen Compd., 2004, 66,
    3934-3938.
    Janak K.; Covaci A.; Voorspoels S.; Becher G.,
    Hexabromocyclododecane in Marine Species from the Western
    Scheldt Estuary: Diastereoisomer- and Enantiomer- Specific
    Accumulation, Environ. Sci. Technol., 2005, 39, 1987-1994
    Kauppila T. J.; Kuuranne T.; Meurer E. C.; Eberlin M. N.; Kotiaho T.;
    Kostiainen R., Atmospheric Pressure Photoionization Mass
    Spectrometry. Ionization Mechanism and the Effect of Solvent on the
    Ionization of Naphthalenes, Anal. Chem., 2002, 74, 5470-5479
    Kauppila T. J.; Kostiainen R.; Bruins A. P., Anisole, a new dopant for
    atmospheric pressure photoionization mass spectrometry of low
    proton affinity, low ionization energy compounds, Rapid Commun.
    Mass Spectrom., 2004, 18, 808–815
    Marvin C. H.; Tomy G. T.; Alaee M.; MacInnis G.,Distribution of
    hexabromocyclododecane in Detroit River suspended sediments,
    Chemosphere, 2006, 64, 268–275
    Morf L. S.; Tremp J.; Gloor R.; Huber Y.; Stengele M.; Zennegg M.,
    Brominated Flame Retardants in Waste Electrical and Electronic
    Equipment: Substance Flows in a Recycling Plant, Environ. Sci.
    Technol., 2005, 39, 8691-8699
    Morris S.; Allchin C. R.; Zegers B. N.; Haftka J. J. H.; Boon J. P.
    Distribution and Fate of HBCD and TBBPA Brominated Flame
    Retardants in North Sea Estuaries and Aquatic Food Webs, Environ.
    Sci. Technol., 2004, 38, 5497-5504
    Robb D.B.; Covey T. R.; Bruins A. P., Atmospheric Pressure
    Photoionization: An Ionization Method for Liquid
    Chromatography-Mass Spectrometry, Anal. Chem., 2000, 72,
    3653-3659
    Tomy G. T.; Budakowski W.; Halldorson T.; Whittle D. M.; Keir M.
    J.;Marvin C.; Macinnis G.; Alaee M., Biomagnification of α- and
    γ-Hexabromocyclododecane Isomers in a Lake Ontario Food Web,
    Environ. Sci. Technol., 2004, 38, 2298-2303
    Tomy G. T.; Halldorson T.; Danell R.; Law K.; Arsenault G.;
    Alaee M.; MacInnis G.; Marvin C. H.,Refinements to the
    diastereoisomer-specific method for the analysis of
    hexabromocyclododecane, Rapid Commun. Mass Spectrom.,
    2005,19,2819–2826
    Ueno D.; Alaee M.; Marvin C.; Muir D. C.G.; Macinnis G.; Reiner E.;
    Crozier P.; Furdui V. I.; Subramanian A.; Fillmann G.; Lam P. K. S.;
    Zheng G. J.; Muchtar M.; Razak H.; Prudente M.; Chung K.; Tanabe
    S., Distribution and transportability of hexabromocyclododecane
    (HBCD) in the Asia-Pacific region using skipjack tuna as a
    bioindicator, Environ. Pollution, 2006, 144, 238-247
    Yang C.; Henion J., Atmospheric pressure photoionization liquid
    chromatographic–mass spectrometric determination of idoxifene and
    its metabolites in human plasma, J. Chromatogr. A, 2002, 970,
    155–165
    Zegers B. N.; Mets A.; Bommel R. V.; Minkenberg C.; Hamers T.;
    Kamstra J. H.; Pierce G. J.; Boon J. P.,Levels of
    Hexabromocyclododecane in Harbor Porpoises and Common
    Dolphins from Western European Seas, with Evidence for
    Stereoisomer-Specific Biotransformation by Cytochrome P450,
    Environ. Sci. Technol., 2005, 39, 2095-2100

    QR CODE
    :::