| 研究生: |
陳宏桂 Tran Hoang Quy |
|---|---|
| 論文名稱: |
應用CNC 強力刮齒於直齒面齒輪齒面拓樸修整之數學模型建立 Mathematical Modeling of Applying CNC Power Skiving on Tooth Surface Topology Modification for Spur Face Gears |
| 指導教授: |
吳育仁
Yu-Ren Wu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 英文 |
| 論文頁數: | 68 |
| 中文關鍵詞: | 強力刮齒加工 、面齒輪 、拓撲修整 、敏感度矩陣 |
| 外文關鍵詞: | Power skiving, Face gear, Tooth surface modification, Sensitivity method |
| 相關次數: | 點閱:19 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
目前,強力刮齒切削是齒輪制造中極高效率的加工方式。為了提高面齒輪的製
造效率,本研究提出了一種通用的方法,通過應用強力刮齒切削齒輪的方法和一種靈
活的數值方式来修正面齒輪齒面上的法線偏差。理輪上的面齒輪齒面是通過直齒型面
齒輪與直齒小齒輪之間的共軛條件推導出来的。本研究之數學模型建構是基於齒條切
割刀具的法向截面與配有強力刮齒刀之 CNC 加工機加工面齒輪的原理來定義。由於強
力刮齒刀的非對稱,本研究計算了面齒輪的表面法線偏差,並對機床上的軸進行調整,
使其作用於面齒輪齒面拓樸修型的数学模型上。然後採用基於 Levenberg-Marquardt
( LM)的最小化算法來進行敏感度矩陣的計算,最終計算出機床各軸的加工系数,從
而實現控制面齒輪齒面上的法线偏差。
Power skiving is currently the most efficient process for gear manufacturing. To
improve the manufacturing productivity of face gears, this study proposes a general method for
geometric generation of face gears by applying the gear power skiving method and a flexible
numerical approach for correcting normal deviations on the face-gear tooth surfaces. The
theoretical face-gear tooth surfaces are derived using the conjugation relationship between the
spur face-gear and the spur pinion. Mathematical modelling is defined for the conical skiving
cutter based on a normal section of rack cutter and the machining principle of face gear on the
CNC gear skiving machine. Due to the asymmetric skiving cutter, surface normal-deviations of
the face gear are calculated, and the mathematical model of the machine-axis modification for
the face-gear tooth topology modification is studied. Finally, a sensitivity correction method
based on the Levenberg-Marquardt (LM) minimization algorithm for calculating the machine
motion coefficients is employed to achieve the desired normal deviations on the face-gear tooth
surface.
[1] F.L. Litvin, J.C. Wang, R.B. Bossler, Y.J. Chen, G. Heath, Application of Face-Gear Drives in Helicopter Transmissions, DTIC_ADA257727 (1992).
[2] V. Pittler, Verfahren zum Schneiden von Zahnrädern mittels eines zahnradartigen, an den Stirnflächen der Zähne mit Schneidkanten versehenen Schneidwerkzeugs, Patent Application, (1910).
[3] H.J. Stadtfeld, Power Skiving of Cylindrical Gears on Different Machine Platforms, Gear Technology (2014).
[4] D. Spath, A. Huhsam, Skiving for High-performance Machining of Periodic Structures, CIRP Annals - Manufacturing Technology (2002).
DOI: 10.1016/S0007-8506(07)61473-5
[5] F.L. Litvin, A. Fuentes, Gear Geometry and Applied Theory, Cambridge University Press, (2004).
[6] E.W. Miller, Hob for generating crown gears, US Patent #2,304,586 (1942).
[7] F.L. Litvin, A. Fuentes, C. Zanzi, M. Pontiggia, R.F. Handschuh. Face-gear drive with spur involute pinion: geometry, generation by a worm, stress analysis, Comput. Method. Appl. M. 2002.
DOI: 10.1016/S0045-7825(02)00215-3
[8] H.A. Zschippang, S. Weikert, K.A. Küçük, K. Wegener, Face-gear drive: Geometry generation and tooth contact analysis, Mech. Mach. Theory (2019).
DOI: 10.1016/j.mechmachtheory.2019.103576
[9] Y.Z. Wang, X.M. Chu, W.J. Zhao, Z. Wang, G.Y. Su, Y.Z. Huang, A precision generating hobbing method for face gear with assembly spherical hob, Journal of Central South University (2019).
DOI: 10.1007/s11771-019-4207-3
[10] Y.Z. Wang, Z. Lan, L.W. Hou, H.P. Zhao, Y. Zhong, A generating milling method for a spur face gear using a five-axis computer numerical control milling machine, J. Engineering Manufacture (2015).
DOI: 10.1177/0954405415619346
[11] X.Y. Yang and J.Y. Tang, Research on manufacturing method of CNC plunge milling for spur face-gear, J Mater Process Tech (2014).
DOI: 10.1016/j.jmatprotec.2014.07.010
[12] H. Guo, I. Gonzalez-Perez, A. Fuentes-Aznar, Computerized generation and meshing simulation of face gear drives manufactured by circular cutters, Mech. Mach. Theory 133 (2019).
DOI: 10.1016/j.mechmachtheory.2018.11.002
[13] H.A. Zschippang, S. Weikert, K. Wegener, Face-gear drive: Simulation of shaping as manufacturing process of face-gears, Mech. Mach. Theory 172 (2022).
DOI: 10.1016/j.mechmachtheory.2022.104791
[14] F.L. Litvin, A. Fuentes, C. Zanzi, M. Pontiggia, Design, generation, and stress analysis of two versions of geometry of face-gear drives, Mech. Mach. Theory 37 (2002).
DOI: 10.1016/S0094-114X(02)00050-2
[15] H.A. Zschippang, S. Weikert, K. Wegener, Face-gear drive: Meshing efficiency assessment, Mech. Mach. Theory 171 (2022).
DOI: 10.1016/j.mechmachtheory.2022.104765
[16] M. Kojima and K. Nishijima, Gear Skiving of Involute Internal Spur Gear. Bulletin of JSME 17(106), 511-518, The Japan Society of Mechanical Engineers (1974).
DOI: 10.1299/jsme1958.17.511
[17] C.Y. Tsai, Mathematical model for design and analysis of power skiving
tool for involute gear cutting, Mech. Mach. Theory 101 (2016).
DOI: 10.1016/j.mechmachtheory.2016.03.021
[18] E.K. Guo, R.J. Hong, X.D. Huang, C.G. Fang, A correction method for power skiving of cylindrical gears lead modification, J. Mech. Sci. Technol. 29 (2015).
DOI: 10.1007/s12206-015-0936-x
[19] E.K. Guo, R.J. Hong, X.D. Huang, C.G. Fang, Research on the design of skiving tool for machining involute gears, J. Mech. Sci. Technol. 28 (2014).
DOI 10.1007/s12206-014-1133-z
[20] X.C. Chen, J. Li, B.C. Lou, A study on the design of error-free spur slice cutter, Int. J. Adv. Manuf. Technol. 68 (2013).
DOI: 10.1007/s00170-013-4794-3
[21] Y.P. Shih, Y.J. Li, A Novel Method for Producing a Conical Skiving Tool With Error-Free Flank Faces for Internal Gear Manufacture, Journal of Mechanical Design 140 (2017).
DOI: 10.1115/1.4038567
[22] C.Y. Tsai, Power-skiving tool design method for interference-free involute internal gear cutting, Mech. Mach. Theory 164 (2021).
DOI: 10.1016/j.mechmachtheory.2021.104396
[23] T.T. Luu, Y.R. Wu, A novel correction method to attain even grinding allowance in CNC gear skiving process, Mech. Mach. Theory 171 (2022).
DOI: 10.1016/j.mechmachtheory.2022.104771
[24] J.K. Jiang, Z.D. Fang, High-order tooth flank correction for a helical gear on a six-axis CNC hob machine, Mech. Mach. Theory 91 (2015).
DOI: 10.1016/j.mechmachtheory.2015.04.012
[25] V.Q. Tran, Y.R. Wu, A novel method for closed-loop topology modification of helical gears using internal-meshing gear honing, Mech. Mach. Theory 145 (2020).
DOI: 10.1016/j.mechmachtheory.2019.103691
[26] Y.B. Shen, X. Liu, D.Y. Li, Z.P. Li, A method for grinding face gear of double crowned tooth geometry on a multi-axis CNC machine, Mech. Mach. Theory 121 (2018).
DOI: 10.1016/j.mechmachtheory.2017.11.007
[27] D.K. Vu, Y.R. Wu, Q.D. Nguyen, A. Arifin, Closed-loop topology modification of gear tooth flanks considering both dressing and honing processes for internal-meshing gear honing, Mech. Mach. Theory 187 (2023).
DOI: 10.1016/j.mechmachtheory.2023.105372
[28] E.K. Guo, R.J. Hong, X.D. Huang, C.G. Fang, A novel power skiving method using the common shaper cutter, Int. J. Adv. Manuf. Technol. 83 (2016).
DOI: 10.1007/s00170-015-7559-3
[29] T.T. Luu., Y.R. Wu, A novel approach to attain tooth flanks with variable pressure and helical angles utilizing the same cutter in the CNC gear skiving process, Int. J. Adv. Manuf. Technol. 123 (2022).
DOI: 10.1007/s00170-022-10220-4
[30] Z.Y. Han, C. Jiang, X.Z. Deng, Machining and meshing analysis of face gears by power skiving, J. Adv. Mech. Des. Sys. Manuf. 16 (2022).
DOI:10.1299/jamdsm.2022jamdsm0002
[31] S. Mo, S. Wang, B. Luo, H. Bao, G. Cen, Y. Huang, Research on the skiving technology of face gear, Int J Adv Manuf Technol. 121 (2022).
DOI: 10.1007/s00170-022-09663-6
[32] H. Guo, T. Ma, S. Zhang, N. Zhao, A. Fuentes, Computerized generation and surface deviation correction of face gear drives generated by skiving, Mech. Mach. Theory 173 (2022).
DOI: 10.1016/j.mechmachtheory.2022.104839
[33] American Gear Manufacturers Association, Bevel Gear Classification, Tolerances, and Measuring Methods, ANSI/AGMA 2009-B01.