跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳宏桂
Tran Hoang Quy
論文名稱: 應用CNC 強力刮齒於直齒面齒輪齒面拓樸修整之數學模型建立
Mathematical Modeling of Applying CNC Power Skiving on Tooth Surface Topology Modification for Spur Face Gears
指導教授: 吳育仁
Yu-Ren Wu
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 68
中文關鍵詞: 強力刮齒加工面齒輪拓撲修整敏感度矩陣
外文關鍵詞: Power skiving, Face gear, Tooth surface modification, Sensitivity method
相關次數: 點閱:19下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目前,強力刮齒切削是齒輪制造中極高效率的加工方式。為了提高面齒輪的製
    造效率,本研究提出了一種通用的方法,通過應用強力刮齒切削齒輪的方法和一種靈
    活的數值方式来修正面齒輪齒面上的法線偏差。理輪上的面齒輪齒面是通過直齒型面
    齒輪與直齒小齒輪之間的共軛條件推導出来的。本研究之數學模型建構是基於齒條切
    割刀具的法向截面與配有強力刮齒刀之 CNC 加工機加工面齒輪的原理來定義。由於強
    力刮齒刀的非對稱,本研究計算了面齒輪的表面法線偏差,並對機床上的軸進行調整,
    使其作用於面齒輪齒面拓樸修型的数学模型上。然後採用基於 Levenberg-Marquardt
    ( LM)的最小化算法來進行敏感度矩陣的計算,最終計算出機床各軸的加工系数,從
    而實現控制面齒輪齒面上的法线偏差。


    Power skiving is currently the most efficient process for gear manufacturing. To
    improve the manufacturing productivity of face gears, this study proposes a general method for
    geometric generation of face gears by applying the gear power skiving method and a flexible
    numerical approach for correcting normal deviations on the face-gear tooth surfaces. The
    theoretical face-gear tooth surfaces are derived using the conjugation relationship between the
    spur face-gear and the spur pinion. Mathematical modelling is defined for the conical skiving
    cutter based on a normal section of rack cutter and the machining principle of face gear on the
    CNC gear skiving machine. Due to the asymmetric skiving cutter, surface normal-deviations of
    the face gear are calculated, and the mathematical model of the machine-axis modification for
    the face-gear tooth topology modification is studied. Finally, a sensitivity correction method
    based on the Levenberg-Marquardt (LM) minimization algorithm for calculating the machine
    motion coefficients is employed to achieve the desired normal deviations on the face-gear tooth
    surface.

    摘要 i Abstract ii Acknowledgment iii Table of Contents iv List of Figures vi List of Tables ix Nomenclature x Chapter 1 Introduction 1 1.1. Research background 1 1.2. Literature review 3 1.3. Research objectives 6 1.4. Thesis overview 7 Chapter 2 Mathematical model of the face-gear tooth surface 8 2.1. Spur pinion tooth surfaces 8 2.2. Face-gear tooth surfaces 10 Chapter 3 Mathematical model of generating the face gear by power skiving 13 3.1. Mathematical model of the power skiving cutter 13 3.2. Mathematical model of the skiving face-gear on the CNC gear skiving machine 18 Chapter 4 Numerical approach for topology modification in face-gear power skiving 23 4.1. Mathematical modelling for machine-axis modification in the multi-axis CNC gear skiving machine 23 4.2. Optimization model for calculating machine-axis settings 25 4.3. Evaluation of machine-axis additional coefficients on tooth surface normal deviation 28 4.4. Validation of proposed machining method for manufacturing spur face gear using conical skiving cutter 31 Chapter 5 Numerical examples 34 5.1. Non-grinding face-gear tooth surface with pre-defined accuracy grade 34 5.2. Face-gear tooth surface with a pre-defined even grinding stock amount 38 5.3. Double-crowning face-gear tooth surface with a pre-defined crowning amount 42 Chapter 6 Conclusions and future works 47 6.1. Conclusions 47 6.2. Future works 47 References 48 Author Profile 52

    [1] F.L. Litvin, J.C. Wang, R.B. Bossler, Y.J. Chen, G. Heath, Application of Face-Gear Drives in Helicopter Transmissions, DTIC_ADA257727 (1992).
    [2] V. Pittler, Verfahren zum Schneiden von Zahnrädern mittels eines zahnradartigen, an den Stirnflächen der Zähne mit Schneidkanten versehenen Schneidwerkzeugs, Patent Application, (1910).
    [3] H.J. Stadtfeld, Power Skiving of Cylindrical Gears on Different Machine Platforms, Gear Technology (2014).
    [4] D. Spath, A. Huhsam, Skiving for High-performance Machining of Periodic Structures, CIRP Annals - Manufacturing Technology (2002).
    DOI: 10.1016/S0007-8506(07)61473-5
    [5] F.L. Litvin, A. Fuentes, Gear Geometry and Applied Theory, Cambridge University Press, (2004).
    [6] E.W. Miller, Hob for generating crown gears, US Patent #2,304,586 (1942).
    [7] F.L. Litvin, A. Fuentes, C. Zanzi, M. Pontiggia, R.F. Handschuh. Face-gear drive with spur involute pinion: geometry, generation by a worm, stress analysis, Comput. Method. Appl. M. 2002.
    DOI: 10.1016/S0045-7825(02)00215-3
    [8] H.A. Zschippang, S. Weikert, K.A. Küçük, K. Wegener, Face-gear drive: Geometry generation and tooth contact analysis, Mech. Mach. Theory (2019).
    DOI: 10.1016/j.mechmachtheory.2019.103576
    [9] Y.Z. Wang, X.M. Chu, W.J. Zhao, Z. Wang, G.Y. Su, Y.Z. Huang, A precision generating hobbing method for face gear with assembly spherical hob, Journal of Central South University (2019).
    DOI: 10.1007/s11771-019-4207-3
    [10] Y.Z. Wang, Z. Lan, L.W. Hou, H.P. Zhao, Y. Zhong, A generating milling method for a spur face gear using a five-axis computer numerical control milling machine, J. Engineering Manufacture (2015).
    DOI: 10.1177/0954405415619346
    [11] X.Y. Yang and J.Y. Tang, Research on manufacturing method of CNC plunge milling for spur face-gear, J Mater Process Tech (2014).
    DOI: 10.1016/j.jmatprotec.2014.07.010
    [12] H. Guo, I. Gonzalez-Perez, A. Fuentes-Aznar, Computerized generation and meshing simulation of face gear drives manufactured by circular cutters, Mech. Mach. Theory 133 (2019).
    DOI: 10.1016/j.mechmachtheory.2018.11.002
    [13] H.A. Zschippang, S. Weikert, K. Wegener, Face-gear drive: Simulation of shaping as manufacturing process of face-gears, Mech. Mach. Theory 172 (2022).
    DOI: 10.1016/j.mechmachtheory.2022.104791
    [14] F.L. Litvin, A. Fuentes, C. Zanzi, M. Pontiggia, Design, generation, and stress analysis of two versions of geometry of face-gear drives, Mech. Mach. Theory 37 (2002).
    DOI: 10.1016/S0094-114X(02)00050-2
    [15] H.A. Zschippang, S. Weikert, K. Wegener, Face-gear drive: Meshing efficiency assessment, Mech. Mach. Theory 171 (2022).
    DOI: 10.1016/j.mechmachtheory.2022.104765
    [16] M. Kojima and K. Nishijima, Gear Skiving of Involute Internal Spur Gear. Bulletin of JSME 17(106), 511-518, The Japan Society of Mechanical Engineers (1974).
    DOI: 10.1299/jsme1958.17.511
    [17] C.Y. Tsai, Mathematical model for design and analysis of power skiving
    tool for involute gear cutting, Mech. Mach. Theory 101 (2016).
    DOI: 10.1016/j.mechmachtheory.2016.03.021
    [18] E.K. Guo, R.J. Hong, X.D. Huang, C.G. Fang, A correction method for power skiving of cylindrical gears lead modification, J. Mech. Sci. Technol. 29 (2015).
    DOI: 10.1007/s12206-015-0936-x
    [19] E.K. Guo, R.J. Hong, X.D. Huang, C.G. Fang, Research on the design of skiving tool for machining involute gears, J. Mech. Sci. Technol. 28 (2014).
    DOI 10.1007/s12206-014-1133-z
    [20] X.C. Chen, J. Li, B.C. Lou, A study on the design of error-free spur slice cutter, Int. J. Adv. Manuf. Technol. 68 (2013).
    DOI: 10.1007/s00170-013-4794-3
    [21] Y.P. Shih, Y.J. Li, A Novel Method for Producing a Conical Skiving Tool With Error-Free Flank Faces for Internal Gear Manufacture, Journal of Mechanical Design 140 (2017).
    DOI: 10.1115/1.4038567
    [22] C.Y. Tsai, Power-skiving tool design method for interference-free involute internal gear cutting, Mech. Mach. Theory 164 (2021).
    DOI: 10.1016/j.mechmachtheory.2021.104396
    [23] T.T. Luu, Y.R. Wu, A novel correction method to attain even grinding allowance in CNC gear skiving process, Mech. Mach. Theory 171 (2022).
    DOI: 10.1016/j.mechmachtheory.2022.104771
    [24] J.K. Jiang, Z.D. Fang, High-order tooth flank correction for a helical gear on a six-axis CNC hob machine, Mech. Mach. Theory 91 (2015).
    DOI: 10.1016/j.mechmachtheory.2015.04.012
    [25] V.Q. Tran, Y.R. Wu, A novel method for closed-loop topology modification of helical gears using internal-meshing gear honing, Mech. Mach. Theory 145 (2020).
    DOI: 10.1016/j.mechmachtheory.2019.103691
    [26] Y.B. Shen, X. Liu, D.Y. Li, Z.P. Li, A method for grinding face gear of double crowned tooth geometry on a multi-axis CNC machine, Mech. Mach. Theory 121 (2018).
    DOI: 10.1016/j.mechmachtheory.2017.11.007
    [27] D.K. Vu, Y.R. Wu, Q.D. Nguyen, A. Arifin, Closed-loop topology modification of gear tooth flanks considering both dressing and honing processes for internal-meshing gear honing, Mech. Mach. Theory 187 (2023).
    DOI: 10.1016/j.mechmachtheory.2023.105372
    [28] E.K. Guo, R.J. Hong, X.D. Huang, C.G. Fang, A novel power skiving method using the common shaper cutter, Int. J. Adv. Manuf. Technol. 83 (2016).
    DOI: 10.1007/s00170-015-7559-3
    [29] T.T. Luu., Y.R. Wu, A novel approach to attain tooth flanks with variable pressure and helical angles utilizing the same cutter in the CNC gear skiving process, Int. J. Adv. Manuf. Technol. 123 (2022).
    DOI: 10.1007/s00170-022-10220-4
    [30] Z.Y. Han, C. Jiang, X.Z. Deng, Machining and meshing analysis of face gears by power skiving, J. Adv. Mech. Des. Sys. Manuf. 16 (2022).
    DOI:10.1299/jamdsm.2022jamdsm0002
    [31] S. Mo, S. Wang, B. Luo, H. Bao, G. Cen, Y. Huang, Research on the skiving technology of face gear, Int J Adv Manuf Technol. 121 (2022).
    DOI: 10.1007/s00170-022-09663-6
    [32] H. Guo, T. Ma, S. Zhang, N. Zhao, A. Fuentes, Computerized generation and surface deviation correction of face gear drives generated by skiving, Mech. Mach. Theory 173 (2022).
    DOI: 10.1016/j.mechmachtheory.2022.104839
    [33] American Gear Manufacturers Association, Bevel Gear Classification, Tolerances, and Measuring Methods, ANSI/AGMA 2009-B01.

    QR CODE
    :::