| 研究生: |
陳林裕 Lin-yu Chen |
|---|---|
| 論文名稱: |
雙折射外差干涉術之角度量測及定位技術開發 Development of angular displacement measurement and positioning by birefringence heterodyne interferometry |
| 指導教授: |
李朱育
Ju-yi Lee |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 光機電工程研究所 Graduate Institute of Opto-mechatronics Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 102 |
| 中文關鍵詞: | 雙折射干涉術 、外差干涉術 、角度量測 、定位系統 |
| 外文關鍵詞: | birefringence, heterodyne interferometry, angular measurement, position |
| 相關次數: | 點閱:17 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用雙折射外差干涉術開發一種大範圍且具高精度的角度偵測技術,可應用於角度定位系統。P與S偏光通過雙折射晶體時,其相位差變化對入射角極為靈敏。外差干涉儀可精密地擷取兩偏振光的相位變化,以達到量測角度的目的。同時,我們設計一種新穎光路,以稜鏡將光線導入雙折射晶體,可提高相位對於入射角的靈敏度。於此研究中,我們開發了兩套角度量測系統,分別為線偏光系統與旋光系統。兩系統皆為共光程的架構,可有效地降低環境的干擾。根據實驗結果,線偏光系統的解析力為1.2×10-4° (量測範圍: -20°~3°)。旋光系統的解析力為3×10-5° (量測範圍¬:¬¬±2.5×10-3°)。最後我們整合了角度量測、步進驅動與回授控制裝置,完成了角度定位系統。其定位精度可達1×10-3°,定位範圍20°。
The birefringence heterodyne interferometry for the angular measurement and position is presented. The advantage of the instrument is the large measurement range and high resolution. When p- and s-polarized beams pass through a birefringence crystal, the phase difference between these two polarized beams is sensitive to the incident angle. We can determine the angular variation with the heterodyne interferometer which can precisely detect the phase difference between these two polarized beams. Moreover, a new optical path is designed to enhance the sensitivity by means of prism which couples the light to the birefringence crystal. There are two measurement modes in our system, linear and circular polarized modes. The experimental results show that the resolution of linear polarized mode is 1.2×10-4° (measurement range: -20°~3°) and the resolution of circular polarized mode is 3×10-5° (measurement range: ±2.5×10-3°). Besides, we built an angular positioning system with 1×10-3° accuracy and 20° positioning range by means of an angular measurement system, a step motor and a feedback controller.
[1]. W. Gao, P. S. Huang, T. Yamada, and S. Kiyono, “A compact and sensitive two- dimensional angle probe for flatness measurement of large silicon wafers,” Precis. Eng. 26(4), 396-404 (2002).
[2]. P. S. Huang and X. Xu, “Design of an optical probe for surface profile measurement,” Opt. Eng. 38(7), 1223–1228 (1999).
[3]. S. T. Lin, K. T. Lin, and W. J. Syu, “Angular interferometer using calcite prism and rotating analyzer,” Opt. Commun. 277(2), 251–255 (2007).
[4]. S. Zhang, S. Kiyono, Y. Uda, and M. Mito, “Development of a measurement system of the angular profile of the polygon mirror surface,” Int. J. Jpn. Soc. Precis. Eng. 30(4), 349–350 (1996).
[5]. S. Kiyono, X. Shan, and H. Sato, “Development of an AFM using a critical angular sensor,” Int. J. Jpn. Soc. Precis. Eng. 27, 373–378 (1993).
[6]. Z. G. Lu, J. B. Tan, X. P. Zhao, T. Zheng, S. Lin, and L. Y. Zhang, “Measuring parallelism for two thin parallel beams based on autocollimation principle,” The 11th International Symposium of Measurement Technology and Intelligent Instruments, (Aachen, 2013), pp. 1–5.
[7]. M. Xiao, S. Jujo, S. Takahashi, and K. Takamasu, “Nanometer profile measurement of large aspheric optical surface by scanning deflectometry with rotatable devices: uncertainty propagation analysis and experiments,” Precis. Eng. 36(1), 91–96 (2012).
[8]. I. Weingärtner, M. Schulz, and C. Elster, “Novel scanning technique for ultra-precise measurement of topography,” Proc. SPIE 3782, 360–317 (1999).
[9]. W. Gao, Precision Nanometrology (Springer, 2010).
[10]. 潘同宣,「疊紋自動準直儀系統」,國立中央大學,碩士論文,民國102年。
[11]. A. Khiat, F. Lamarque, C. Prelle, N. Bencheikh, and E. Dupont, “High-resolution fibre-optic sensor for angular displacement measurements,” Meas. Sci. Technol. 21(2), 025306 (2010).
[12]. J. M. S. Sakamoto, C. Kitano, G. M. Pacheco, and B. R. Tittmann, “High sensitivity fiber optic angular displacement sensor and its application for detection of ultrasound,” Appl. Opt. 51(20), 484–485 (2012).
[13]. P. Shi and E. Stijns, “New optical method for measuring small-angle rotations,” Appl. Opt. 27(20), 4342–4346 (1988).
[14]. P. Shi and E. Stijns, “Improving the linearity of the Michelson interferometric angular measurement by a parameter compensation method,” Appl. Opt. 32(1), 44–51 (1993).
[15]. M. Ikram and G. Hussain, “Michelson interferometer for precision angle measurement,” Appl. Opt. 38(1), 113–120 (1999).
[16]. K. C. Fan, B. H. Liao, and F. Cheng, “Ultra-precision angle measurement based on Michelson interferometry,” J. CSME 34(1), 39–44 (2013).
[17]. D.F. Zheng, X.Z. Wang, and Z.L. Lia, “Accuracy analysis of parallel plate interferometer for angular displacement measurement,” Opt. Laser Technol. 40(1), 6–12 (2008).
[18]. D. Malacara and O. Harris, “Interferometric measurement of angles,” Appl. Opt. 9(7), 1630–1633 (1970).
[19]. H. G. Yun, S. H. Kim, H. S. Jeong, and K. H. Kim “Rotation angle measurement based on white-light interferometry with a standard optical flat,” Appl. Opt. 51(6), 720–725 (2012).
[20]. C. N. Zhang and X. Z. Wang, “Sinusoidal phase-modulating laser diode interferometer for measuring angular displacement,” Opt. Eng. 43(12), 3008–3013 (2004).
[21]. D. F. Zheng, X. Z. Wang, and O. Sasaki, “Parallel plate interferometer with a reflecting mirror for measuring angular displacement,” Opt. Rev. 14(5), 314–318 (2007).
[22]. S. T. Lin and W. J. Syu, “Heterodyne angular interferometer using a square prism,” Opt. Laser Eng. 47(1), 80–83 (2009).
[23]. P. S. Huang, S. Kiyono, and O. Kamada, “Angle measurement based on the internal-reflection effect: a new method,” Appl. Opt. 31(28), 6047–6055 (1992).
[24]. P. S. Huang and J. Ni, “Angle measurement based on the internal-reflection effect using elongated critical-angle prisms,” Appl. Opt. 35(13), 2239–2241 (1996).
[25]. M. H. Chiu and D. C. Su, “Angle measurement using total-internal-reflection heterodyne interferometry,” Opt. Eng. 36(6), 1750–1753 (1997).
[26]. M. H. Chiu and D. C. Su, “Improved technique for measuring small angles,” Appl. Opt. 36(28), 7104–7106 (1997).
[27]. M. H. Chiu, S. F. Wang, and R. S. Chang, “Instrument for measuring small angles by use of multiple total internal reflections in heterodyne interferometry,” Appl. Opt. 43(29), 5438–5442 (2004).
[28]. W. D. Zhou and L. L. Cai, “Interferometer for small-angle measurement based on total internal reflection,” Appl. Opt. 37(25), 5957–5963 (1998).
[29]. W. D. Zhou and L. L. Cai, “Improved angle interferometer based on total internal reflection,” Appl. Opt. 38(7), 1179–1185 (1999).
[30]. J. Guo, Z. Zhu, W. Deng, and S. Shen, “Angle measurement using surface-plasmon resonance heterodyne interferometry: a new method,” Opt. Eng. 37(11), 2998–3001 (1998).
[31]. S. F. Wang, M. H. Chiu, C. W. Lai, and R. S. Chang, “High-sensitivity small-angle sensor based on surface plasmon resonance technology and heterodyne interferometry,” Appl. Opt. 45(26), 6702–6707 (2006).
[32]. P. Paolino and L. Bellon, “Single beam interferometric angle measurement,” Opt. Commun. 280(1), 1–9 (2007).
[33]. Y. Jourlin, J. Jay, and O. Parriaux, “Compact diffractive interferometric displacement sensor in reflection,” Precis. Eng. 26(1), 1–6 (2002).
[34]. O. G. Helles, P. Benech, and R. Rimet, “Interometric displacement sensor made by integrated optics on glass,” Sens. Actuators 47(1), 478–481 (1995).
[35]. M. H. Chiu, J. Y. Lee, and D. C. Su, “Complex refractive-index measurement based on Fresnel’s equations and the uses of heterodyne interferometry,” Appl. Opt. 38(19), 4047–4062 (1999).
[36]. G. E. Sommargren, “Optical heterodyne profilometry,” Appl. Opt. 20(4), 610–622, (1981).
[37]. H. Taub and D. L. Schilling, Principles of communication system (McGraw-hill, 1986).
[38]. R. Crane, “Interference phase measurement,” Appl. Opt. 8(3), 538–542 (1969).
[39]. M. Sargent, E. Lamb, and R. L. Fork, “Theory of a Zeeman laser I,” Phy. Rev. Lett. 164(2), 436–449 (1967).
[40]. P. Zeeman, “The effect of magnetisation on the nature of light emitted by a substance,” Nature 55(1424), 347 (1987).
[41]. S. O. Kasap, Optoelectronics and photonics (Prenvice Hall Inc., 2001).
[42]. D. C. Su, M. H. Chiu, and C. D. Chen, “A heterodyne interferometer using an electro- optic modulator for measuring small displacements,” J. Opt. 27(19), 16–23, (1996).
[43]. J. Chen, Y. Ishii, and K. Murata, “Heterodyne interferometry with a frequency -modulated laser diode,” Appl. Opt. 27(1), 124–128 (1988).
[44]. 鍾於哲,「新型波長調制外差光源應用於位移量測」,國立中央大學,碩士論文,民國102年。
[45]. A. Yariv and P. Yeh, Optical wave in crystals (John wiley & sons, 1976).
[46]. S.O. Kasap著,黃俊達等譯,光電子與光子學-原理與應用 (台灣培生教育出版股份有限公司,2003)。
[47]. 鄭諭燦,「共路徑外差干涉儀順序量測雙折射晶體光學參數之設計與研究」,國立成功大學,碩士論文,民國102年。
[48]. Stanford research systems, Model SR850 DSP lock-in amplifier (1992).
[49]. K. Oka, M. Tsukadat, and Y. Ohisuka, “Real-time phase demodulator for optical heterodyne detection processes,” Meas. Sci. Technol. 2(2), 106–110 (1991).
[50]. C. M. Wu and R. D. Deslattes, “Analytical modeling of the periodic nonlinearity in heterodyne interferometry,” Appl. Opt. 37(28), 6696–6700 (1998).
[51]. C. M. Wu and C. S. Su, “Nonlinearity in measurements of length by optical interferometry,” Meas. Sci. Technol. 7(1), 62–68 (1996).
[52]. 蔡永勝,「單頻位移與傾角量測干涉儀」,國立中央大學,碩士論文,民國98年。