| 研究生: |
王威仁 Wei-ren Wang |
|---|---|
| 論文名稱: |
具混亂時序注入機制之全數位高除數次諧波注入鎖定式鎖相迴路 A High Division-Ratio All-Digital Sub-harmonically Injection-Locked PLL with Chaotic Injection Timing Technique |
| 指導教授: |
鄭國興
Kuo-hsing Cheng |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 125 |
| 中文關鍵詞: | 鎖相迴路 、全數位式鎖相迴路 、注入鎖定式鎖相迴路 、參考突波 、高除率 、相位雜訊 |
| 外文關鍵詞: | PLL, ADPLL, SILPLL, Reference spur, High division-ratio, Phase noise |
| 相關次數: | 點閱:6 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文提出一個操作在5 GHz之低相位雜訊全數位次諧波注入鎖定式鎖相迴路。藉由一個額外之延遲鎖定迴路產生10個相位可用於次諧波注入之相位,此次諧波注入式鎖相迴路可以用較低的參考時脈但同時達到與高參考時脈之次諧波注入式鎖相迴路之低相位雜訊效果,同時利用一偽亂波產生器選擇注入相位,將注入之時序打亂,破壞其週期性,可以有效降低次諧波注入式鎖相迴路之高參考突波問題,透過選擇不同組合的注入相位順序,本架構提供了多種注入鎖定模式,可依照對需求之輸出訊號規格調整,達到不同的相位雜訊壓制量與參考突波量,同時由於使用了全數位式的架構,與傳統類比式鎖相迴路比較,其面積與功率消耗較少。
本論文之全數位式鎖相迴路使用90 nm CMOS製程實現晶片,其操作頻率為5 GHz,並且可在100 MHz參考頻率下擁有近於於1 GHz之次諧波注入鎖定之相位雜訊壓制效果,相位雜訊約為-99 dB。電路在操作電壓為1 V時,功率消耗為6.0 mW,而使用亂波注入的機制對於參考突波的衰減量約為14 dB。整體晶片面積為830 × 830 um2,核心電路的面積為228 × 161 um2。
In this thesis, a 5 GHz low phase noise all-digital sub-harmonically injection-locked phase-locked loop (ADSILPLL) is proposed. An all-digital delay-locked loop (ADDLL) is added to provide extra 10 phases of low-phase-noise reference clock for the sub-harmonically injection operation. Proposed PLL uses the different sequence combination of those phases to achieve good phase noise performance without using high reference frequency. By adopting a pseudo chaotic code generator, the injected phase sequences can be randomized and break the periodicity of injection signal to solve the high reference spur issue at SILPLLs. By changing the injected phase sequence, this PLL also provides several different mode with different phase noise performance and reference spur performance for different specification requirement.
The experiment chip of the proposed ADPLL was implemented with 90 nm CMOS process. The measured output frequency is 5 GHz at 1.0 V supply voltage and power consumption is 6.0 mW. The phase noise is equal to -99 dB at 1 MHz frequency offset with 100 MHz reference frequency. The reference spur suppression is about 14 dB compared to full-speed injection. The full chip area is 830 × 830 um2 and the core area is 228 × 161 um2 .
[1]黃映祥, “具高速相位選擇器之六十億赫茲全數位式展頻時脈產生器,” 碩士論文, 國立中央大學, 2013
[2]張毓玲, “使用電流級距控制器以達到寬操作頻率範圍之數位式鎖相迴路,” 碩士論文, 國立中央大學, 2010
[3]J. Lee, and H.-D. Wang, “Study of Subharmonically Injection-Locked PLLs,” IEEE J. Solid-State Circuit, vol. 44, no. 5, pp. 1539-1553, May 2009.
[4]高曜煌, 射頻鎖相迴路IC設計, 滄海書局, 2005.
[5]S. Ye, L. Jansson, and I. Galton, “A multiple-crystal interface PLL with VCO realignment to reduce phase noise,” IEEE J. Solid-State Circuits, vol. 37, no. 12, pp. 1795-1803, Dec. 2002.
[6]Y.-C. Huang and S.-I. Liu, “A 2.4-GHz subharmonically injection-locked PLL with self-calibrated injection timing,” IEEE J. Solid-State Circuits, vol. 48, no. 2, pp. 417-428, Feb. 2013.
[7]C.-F. Liang and K.-J. Hsiao, “An injection-locked ring PLL with self-aligned injection window,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, pp. 90-92, Feb. 2011.
[8]A. Musa, W. Deng, T. Siriburanon, M. Miyahara, K. Okada, and A. Matsuzawa, “A Compact, Low-Power and Low-Jitter Dual-loop Injection Locked PLL Using All-Digital PVT calibration,” IEEE J. Solid-State Circuit, vol. 49, no. 1, pp. 50-60, Jan. 2014.
[9]V. Kratyuk, P. K. Hanumolu, U.-K. Moon, and K. Mayaram, “A Design Procedure for All-Digital Phase-Locked Loops Based on a Charge-Pump Phase-Locked-Loop Analogy,” IEEE Trans. Circuits Syst. II, Express Briefs, vol. 54, no. 3, pp. 247-251, Mar. 2007.
[10]D. Dunwell, and A. C. Carusone, “Modeling Oscillator Injection Locking Using the Phase Domain Response,” IEEE Trans. Circuits Syst. I, Reg. Paper, vol. 60, no. 11, pp. 2823-2833, Nov. 2013.
[11]P. Maffezzoni and S. Levantino, “Phase Noise of Pulse Injection-Locked Oscillators,” IEEE Trans. Circuits Syst. I, Reg. Paper, vol. 61, no. 10, pp. 2912-2919, Oct. 2014.
[12]S.-Y.. Lin and S.-I. Liu, “A 1.5 GHz All-Digital Spread Spectrum Clock Generator,” IEEE J. Solid-State Circuit, vol. 44, no. 11, pp. 3111–3119, Nov. 2009.
[13]涂祐豪, “具寬頻操作與自我相位校正之延遲鎖定迴路與頻率倍頻器,” 碩士論文, 國立中央大學, 2010
[14]C.-L. Wei, T.-K. Kuan, and S.-I. Liu, “A Subharmonically Injection-Locked PLL With Calibrated Injection Pulsewidth,” IEEE Trans. Circuits Syst. II, Express Briefs, vol. 62, no. 6, pp. 548-552, Jun. 2015.
[15]A. Elshazly, R. Inti, B. Young and P. K. Hanumolu, “Clock Multiplication Techniques Using Digital Multiplying Delay-Locked Loops,” IEEE J. Solid-State Circuit, vol. 48, no. 6, pp. 1416-1428, June 2013.
[16]D. Park, and S. Cho, “A 14.2 mW 2.55-to-3 GHz Cascaded PLL With Reference Injection and 800 MHz Delta-Sigma Modulator in 0.13 um CMOS,” IEEE J. Solid-State Circuit, vol. 12, no. 12, pp. 2989-2998, Dec. 2012.
[17]I-T. Lee, K.-H. Zeng, and S.-I. Liu, “A 4.8-GHz Dividerless Subharmonically Injection-Locked All-Digital PLL With a FOM of -252.5 dB,” IEEE Trans. Circuits Syst. II, Express Briefs, vol. 60, no. 9, pp. 547-551, Dec. 2012.
[18]B. M. Helal, C.-M. Hsu, K. Johnson and M. H. Perrott, “A Low Jitter Programmable Clock Multiplier Based on a Pulse Injection- Locked Oscillator With a Highly-Digital Tuning Loop,” IEEE J. Solid-State Circuit, vol. 44, no. 5, pp. 1391-1400, May 2009.
[19]M. M. Izad, and C.-H. Heng “A Pulse Shaping Technique for Spur Suppression in Injection-Locked Synthesizers,” IEEE J. Solid-State Circuit, vol. 47, no. 3, pp. 652-664, Mar. 2012.
[20]P. C. Maulikm, and D. A. Mercer, “A DLL-Based Programmable Clock Multiplier in 0.18 um CMOS with -70dBc Reference Spur,” IEEE J. Solid-State Circuit, vol. 42, no. 8, pp. 1642-1648, Aug. 2007.
[21]J. A. Tierno, A. V. Rylyakov, and D. J. Friedman, “A Wide Power Supply Range, Wide Tuning Range, All Static CMOD All Digital PLL in 65 nm SOI,” IEEE J. Solid-State Circuit, vol. 43, no. 1, pp. 42-51, Jan. 2008.
[22]Y. Lee, Mina Kim, T. Seong, and J. Choi, “A Low Phase Noise Injection-Locked Programmable Reference Clock Multiplier With a Two-Phase PVT-Calibrator for ΔΣ PLLs,” IEEE Trans. Circuits Syst. I, Reg. Paper, vol. 62, no. 3, pp. 635-644, Mar. 2015.
[23]B. Razavi, “A Study of Phase Noise in CMOS Oscillator,” IEEE J. Solid-State Circuits, vol. 31, no. 3, pp. 331-343, Dec. 2002.
[24]Y.-C. Ho, Y.-S. Yang, C.-C. Chang, and C.-C. Su, “A Near-Threshold 480 MHz 78 µW All-Digital PLL With a Bootstrapped DCO,” IEEE J. Solid-State Circuits, vol. 48, no. 11, pp. 2805-2814, Nov. 2013.
[25]W. Deng, D.Yang, T. Ueno, T. Siriburanon, S. Kondo, K. Okada, and A. Matsuzawa, “A Fully Synthesizable All-Digital PLL With Interpolative Phase Coupled Oscillator, Current-Output DAC, and Fine-Resolution Digital Varactor Using Gated Edge Injection Technique,” IEEE J. Solid-State Circuit, vol. 50, no. 1, pp. 68-80, Jan. 2015.
[26]I-T. Lee, K.-H. Zeng, and S.-I. Liu, “A 4.8 GHz Dividerless Subharmonically Injection-Locked All-Digital PLL With a FOM of -252.5 dB,” IEEE Trans. Circuits Syst. II, Express Briefs, vol. 60, no. 9, pp. 547-551, Sep. 2013.
[27]D.-S. Kim, H.-S. Song, T.-H. Kim, S.-W. Kim, and D.-K. Jeong, “A 0.3–1.4 GHz All-Digital Fractional-N PLL With Adaptive Loop Gain Controller,” IEEE J. Solid-State Circuit, vol. 45, no. 11, pp. 2300–2311, Nov. 2010.
[28]K.-H. Choi, J.-B. Shin, J.-Y. Sim, and H.-J. Park, “An Interpolating Digitally Controlled Oscillator for a Wide-Range All-Digital PLL,” IEEE Trans. Circuits Syst. I, Reg. Paper, vol. 56, no. 9, pp. 2055-2063, Sep. 2009.
[29]B. M. Helal, M. Z. Straayer, G.-Y. Wei, and M. H. Perrott, “A Highly Digital MDLL-Based Clock Multiplier That Leverages a Self-Scrambling Time-to-Digital Converter to Achieve Subpicosecond Jitter Performance,” IEEE J. Solid-State Circuit, vol. 43, no. 4, pp. 855-863, Apr. 2008.
[30]R. B. Staszewski, S. Vemulapalli, P. Vallur, J. Wallberg, and P. T. Balsara, “1.3 V 20 ps Time-to-Digital Converter for Frequency Synthesis in 90-nm CMOS,” IEEE Trans. Circuits Syst. II, Express Briefs, vol. 53, no. 3, pp. 220-224, Mar. 2006.
[31]B. Razavi, Design of Analog CMOS Integrated Circuit, New York, McGraw-Hill, 2001.
[32]劉深淵, 楊清淵, 鎖相迴路, 滄海書局, 2006.