| 研究生: |
林哲君 Zhe-jun Lin |
|---|---|
| 論文名稱: |
氮化鎵LED表面粗糙對光萃取效率之最佳化研究 Optimization of surface roughness of GaN LED for enhancement of light extraction efficiency |
| 指導教授: |
陳啟昌
Chii-chang Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 82 |
| 中文關鍵詞: | 發光二極體 、基因演算法 |
| 外文關鍵詞: | Genetic Algorithms, LED |
| 相關次數: | 點閱:25 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文的研究主題是以光波導的概念來探討發光二極體(light emitting diode, LED)的光萃取效率,利用有限差分光束傳播法(Finite-Difference Beam Propagation Method, FD-BPM)計算氮化鎵 LED光波導內最強模態的角度,根據此角度設計最佳穿透效率的光柵結構於氮化鎵的表面上,目的使其達到最佳的光萃取效率,研究方法利用(FD-BPM)來計算多重量子井(Multi Quantum Wells, MQWs)的位置與最強模態角度的關係,根據此模擬結果得到最強模態的角度,將此角度運用嚴格耦合波搭配基因演算法做系統性的參數優化,找出最佳穿透效率的光柵結構參數,在發光波長為460 nm,其光柵週期為2.07 ?m、填充因子為0.51、蝕刻深度為0.2 ?m,根據此模擬結果LED的光萃取效率相較於平板結構約可增強36 %,利用FD-BPM可以快速的決定LED表面的粗化程度,並結合嚴格耦合波與基因演算法的優化,達到最佳的光萃取效率。
The subject of this thesis is to promote the light extraction of light emitting diodes by using the concept of optical waveguide. We use the Finite-Difference Beam Propagation Method (FD-BPM) to simulate the GaN LED waveguide and calculate the angle ( ) corresponding to strongest guided mode. According to the simulation results of FD-BPM, we can design the maximum transmission efficiency grating structure to roughen the surface of the GaN to increase the light extraction. First, we used FD-BPM to compute the relationship between the position of the Multi Quantum Wells (MQWs) and the strongest modes. From the simulation results, the angles of the strongest modes can be obtained. According to the angles of the strongest modes obtained by FD-BPM, we adopted the Rigorous Coupled Wave Analysis (RCWA) to compute the transmission efficiency of the grating structure and the Genetic Algorithms (GAs) to optimize the parameters of the grating structure to find the maximum transmission efficiency. From the results of the GAs, the optimum parameters of the grating structure at the wavelength of 460 nm the grating period were 2.07 ?m, filling factor 0.51 and etching depth 0.2 ?m. The light extraction efficiency of the grating structure compared to the slab structure was promoted to 36 %. The LED with the periodic structure can be rapidly determined by the FD-BPM and the RCWA based on the GAs to optimize the light extraction.
[1] http://led-world.blogspot.com/
[2] http://midhomes.net/wp-content/uploads/2011/05/led-lighting.jpg
[3] E. F. Schubert, "Light Emitting Diodes, " ( Cambridge University Press, Cambridge,2003)
[4] M. Y. Hsieh, et al. "Improvement of External Extraction Efficiency in GaN-Based LEDs by SiO2 Nanosphere Lithography, " IEEE Photon. Technol. Lett. 29, 658 (2008)
[5] Y. J. Lee, et al. "Study of GaN-Based Light-Emitting Diodes Grown on Chemical Wet-etching-Patterned Sapphire Substrate With V-Shaped Pits Roughening Surfaces, " J. Lihgtwave Technol. 26, 1455 (2008)
[6] T. K. Kim, et al. "GaN-based light-emitting diode with textured indium tin oxide transparent layer coated with Al2O3 powder, " Appl. Phys. Lett. 94, 161107 (2009)
[7] C. H. Kuo, et al. "Nitride-based near-ultraviolet light emitting diodes with meshed p-GaN, " Appl. Phys. Lett. 90, 142115 (2007)
[8] M. A. Tsai, et al. "Efficiency Enhancement and Beam Shaping of GaN-InGaN Vertical-Injection Light-Emitting Diodes via High-Aspect-Ratio Nanorod Arrays, " IEEE Photon. Technol. Lett. 21, 257 (2009)
[9] R. Windish, et al. "Impact of texture-enhnaced transmission of high-efficiency surface-textured light-emitting diodes, " Appl. Phys. Lett. 79, 2315 (2001)
[10] H. W. Hunag, et al. "Enhanced light output from a nitride-based power chip of green light-emitting diodes with nano-rough surface using nanoimprint lithography, " Nanotechnology 19, 185301 (2008)
[11] S. J. Chang, et al. "Nitride-based light emitting diodes with indium tin oxide electrode patterned by imprint lithography, " Appl. Phys. Lett. 91, 013504 (2007)
[12] H. W. Hunag, et al. "Enhanced light output of an InGaN/GaN light emitting diode with a nano-roughened p-GaN surface, " Nanotechnology 16, 1844 (2005)
[13] C. H. Hou, et al. "Output power enhancement of light-emitting diodes via two-dimensional hole arrays generated by a monolayer of microspheres, " Appl. Phys. Lett. 95, 133105 (2009)
[14] H. K. Cho, et al. "Light extraction enhancement from nano-imprinted photonic crystal GaN-based blue light-emitting diodes, " Opt. Express 14, 8654 (2006)
[15] D. H. Kim, et al. "Enhanced light extraction from GaN-based light-emitting diodes with holographically generated two-dimensional photonic crystal patterns, " Appl. Phys. Lett. 87, 203508 (2005)
[16] H. K. Cho, et al. "Laser liftoff GaN thin-film photonic crystal GaN-based light-emitting diodes, " IEEE Photon. Technol. Lett. 20, 2096 (2008)
[17] M. R. Krames, et al. "High-power truncated-inverted-pyramid (Al0.5Ga1-x)0.5In0.5P/GaP light-emitting diodes exhibiting>50% external quantum efficiency, " Appl. Phys. Lett. 75, 2365 (1999)
[18] D. S. Wuu, et al. "Enhanced output power of near-ultraviolet InGaN-GaN LEDs grown on patterned sapphire substrates, " IEEE Photonics Technology Letters, 17, 288 (2005)
[19] J. J. Chen, et al. "Enhanced Output Power of GaN-Based LEDs With Nano-Patterned Sapphire Substrates, " IEEE Photonics Technology Letters, 20, 288 (2005)
[20] Y. K. Su, et al. "GaN-Based Light-Emitting Diodes Grown on Photonic Crystal-Patterned Sapphire Substrates by Nanosphere Lithography, " Jpn. J. Appl. Phys. 47, 6706 (2008)
[21] C. H. Chan, et al. "Improved output power of GaN-Based light-emitting diodes grown on a nanopatterned sapphire substrate, " Appl. Phys. Lett. 95, 011110 (2009)
[22] Y. J. Lee, et al. "Enhancing the Output Power of GaN-Based LEDs Grown on Wet-Etched Patterned Sapphire Substrates, " IEEE Photon. Technol. Lett. 18, 1152 (2006)
[23] Y. J. Lee, et al. "Improvement in light-output efficiency of near-ultraviolet InGaN-GaN LEDs fabricated on stripe patterned sapphire substrates, " Mat. Sci. Eng. B-Solid State Mater. Adv. Technol. 122, 184 (2005)
[24] 史光國 "半導體發光二極體及固態照明, " (全華科技圖書股份有限公司, 2005)
[25] 朱建安, "具表面次微米光柵氮化鎵發光二極體遠場光型調制之研究, " 光電科學研究所碩士論文, 國立中央大學(2010)
[26] 曾少澤, "次微米光柵結構於發光二極體表面之研究, " 光電科學研究所碩士論文, 國立中央大學(2009)
[27] 粘珊綺, "電調變液晶波導之研究, " 光電科學研究所碩士論文, 國立中央大學(2010)
[28] Rsoft Design Group, "BeamPROP 6.0-User Guide. "
[29] C. R. Pollock, and M. Lipson, "Integrated Photonics. " (Kluwer Academic Publishers, 2003)
[30] R. L. Haupt, S. E. Haupt, "Practical Genetic Algorithms 2nd Edition, " (John Wiley & Sons, New York, 2004)
[31] 蘇木春、張孝德, "機器學習 類神經網路、模糊系統以及基因演算法則. " (全華圖書, 台北, 2007)修訂二版
[32] M. G. Moharam, et al. "Formulation for stable and efficient implementation of the rigorous. " J. Opt. Soc. Am. A12, 1068 (1995)
[33] P. Lalanne, "Improved formulation of the coupled-wave method for two-dimensional gratings. " J. Opt. Soc. Am. A14, 1592 (1997)
[34] E. N. Glytsis, "Two-dimensionally-periodic diffractive optical elements: limitation of scalar analysis. " J. Opt. Soc. Am. A19, 702 (2002)
[35] M. G. Moharam, et al. "Rigorous coupled-wave analysis of metallic surface-relief gratings. " J. Opt. Soc. Am. A3, 1780 (1986)
[36] P. C. Logofatu, "Rigorous coupled-wave analysis for two-dimensional gratings. " Proc. SPIE 5972 59720Q-1 (2005)
[37] P. Lalanne, et al. "Highly improved convergence of the coupled-wave method for TM polarization. " J. Opt. Soc. Am. A13, 779 (1996)
[38] S. Peng, et al. "Efficient implementation of rigorous coupled-wave analysis for surface-relief gratings. " J. Opt. Soc. Am. A12, 1087 (1995)
[39] C. H. Lin, et al. "Optical Characterization of two-dimensional photonic crystals based on spectroscopic ellipsometry with rigorous coupled-wave analysis. " Microelectronic Engineering, 2006.83: 1798
[40] 欒丕綱、陳啟昌, "光子晶體-從蝴蝶翅膀到奈米光子學. " (五南圖書局出版股份有限公司, 2006)