跳到主要內容

簡易檢索 / 詳目顯示

研究生: 張皓崴
Hao-Wei Chang
論文名稱: 相變材料之建築能耗模擬及分析
Simulation and Analysis of Building Energy Performance Incorporating Phase Change Materials
指導教授: 周建成
Chien-Cheng Chou
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 89
中文關鍵詞: 相變材料淨零碳排能源使用強度建築能耗模擬碳排放
外文關鍵詞: Energy Use Intensity, Insight
相關次數: 點閱:14下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 工業革命製造了大量溫室氣體排放,極端氣候已逐漸對人類的生存造成威脅。因應氣候變遷,聯合國於巴黎氣候協定提出了淨零碳排的目標,國際能源總署更指出全球碳排放量一年裡有37%是來自於建築部門。台灣為達成淨零碳排的目標,於2022年時提出了「臺灣2050淨零排放路徑及策略總說明」,並將提升建築外殼列為重要目標。

    除了被動減碳技術,建築主動調控策略亦逐漸受到重視。相變材料(Phase Change Materials, PCM)應用於建築外殼,具備良好的熱儲存與釋放能力,可有效調節室內溫度,降低建築能耗。然而,相變材料的適用性受限於地區的溫差,因此設計策略需因地制宜。

    本研究擬定台灣部分地區做為實驗地點,以Autodesk平台之Revit 及Insight模擬數據:透過Revit建模設定,設計實驗模型並導入相變材料參數,針對不同地去進行位置改變,隨後輸出至建築能耗模擬軟體-Insight進行雲端模擬,達到BIM結合BEM之整合應用,並基於營運碳排放量及能源使用強度得知相變材料對於建築之影響,分析相變材料用於建築之潛力及可行性,探討其在台灣不同區域之應用潛力與實務之可行性,盼提供未來建築設計之參考。


    Since the Industrial Revolution, the massive emission of greenhouse gases has led to increasingly severe extreme weather events, posing a growing threat to human survival. In response to climate change, the United Nations introduced the goal of net-zero carbon emissions under the Paris Agreement. The International Energy Agency has reported that approximately 37% of global annual carbon emissions originate from the building sector. To align with this international goal, Taiwan released the "Taiwan 2050 Net-Zero Emissions Pathway and Strategy Overview" in 2022, identifying the enhancement of building envelope performance as one of its key strategies.

    In addition to passive carbon reduction technologies, active regulation strategies in buildings have attracted increasing attention. Among them, the integration of Phase Change Materials (PCMs) into building envelopes is recognized for its capacity to store and release thermal energy, thereby stabilizing indoor temperatures and reducing overall energy consumption. However, the effectiveness of PCMs can vary significantly with regional climate conditions, necessitating climate-responsive design strategies.

    This study selects various locations in Taiwan as experimental sites to assess the effectiveness of PCMs. Using Autodesk's Revit and Insight platforms, building models were created in Revit with integrated PCM parameters and subjected to location-based modifications. These models were then imported into Insight for cloud-based simulation, realizing a combined application of Building Information Modeling (BIM) and Building Energy Modeling (BEM). The simulation results, evaluated through operational carbon emissions and Energy Use Intensity (EUI), provide insights into the impact of PCMs on building energy performance. The findings help explore the applicability and feasibility of PCM integration in different climatic zones of Taiwan and offer practical reference for future architectural design and sustainable building strategies.

    摘要 ................................................................................................................................... i Abstract ............................................................................................................................. ii 致謝 ................................................................................................................................. iv 目錄 .................................................................................................................................. v 圖目錄 ........................................................................................................................... viii 表目錄 ............................................................................................................................. xi 第一章 緒論 ..................................................................................................................... 1 1-1 研究背景與動機 .................................................................................................... 1 1-2 研究問題與目的 .................................................................................................... 3 1-3 研究範圍與限制 .................................................................................................... 4 1-4 研究流程 ................................................................................................................ 5 1-5 論文架構 ................................................................................................................ 7 第二章 文獻回顧 ............................................................................................................. 8 2-1 相變材料 ................................................................................................................ 8 2-1-1 相變材質種類 ................................................................................................. 9 2-1-2 封裝相變材料 ............................................................................................... 12 2-2 暖通空調系統 ..................................................................................................... 12 2-3 相變材料與建築之相關實驗 .............................................................................. 15 2-4 模擬軟體預測相變材料 ...................................................................................... 18 2-5 文獻回顧總結 ...................................................................................................... 22 vi 第三章 能耗分析工具 ................................................................................................ 24 3-1 BEM 建築能耗模擬 ............................................................................................ 24 3-1-1 EnergyPlus ..................................................................................................... 24 3-1-2 OpenStudio ................................................................................................... 25 3-1-3 IES VE .......................................................................................................... 25 3-1-4 DesignBuilder ............................................................................................... 25 3-1-5 Insight ........................................................................................................... 26 3-2 Autodesk insight ................................................................................................... 26 3-2-1 insight 360 .................................................................................................... 26 3-2-2 insight 版本演進 ........................................................................................... 27 3-3 營運碳與隱含碳評估 ......................................................................................... 30 3-3-1 Insight Carbon Analysis與Insight Energy Analysis之差異 ....................... 30 3-3-2 Total Carbon Analysis .................................................................................. 31 3-3-3碳排放視覺化和分析 ................................................................................... 32 第四章 建築能耗分析 ................................................................................................ 39 4-1 實驗設計流程 ...................................................................................................... 39 4-2 Revit 建模及分析設定 ........................................................................................ 41 4-2-1 建築基本設定 ............................................................................................... 41 4-2-2 相變材料設定 ............................................................................................... 44 4-2-3 能源分析設定 ............................................................................................... 48 4-3 台灣地區建築相變材料模擬 .............................................................................. 52 4-3-1 單一材質模擬分析 ....................................................................................... 55 vii 4-3-2 實際牆體模擬分析 ....................................................................................... 57 4-3-3 建築與外殼材料結果分析 ........................................................................... 59 第五章 結論與建議 .................................................................................................... 62 5-1 結論 ...................................................................................................................... 62 5-2 建議 ...................................................................................................................... 63 5-3 貢獻 ...................................................................................................................... 64 參考文獻 ........................................................................................................................ 65

    1. 周琪. (2015). 鋁蜂巢牆板內置微膠囊相變化材料之動態熱傳特性
    2. 國家發展委員會. (2022). 積極設定減碳新目標(2030/2032/2035). https://www.ndc.gov.tw/Content_List.aspx?n=F59FF484C69D07BF
    3. Bohórquez-Órdenes, J., Tapia-Calderón, A., Vasco, D. A., Estuardo-Flores, O., & Haddad, A. N. (2021). Methodology to reduce cooling energy consumption by incorporating PCM envelopes: A case study of a dwelling in Chile. Building and Environment, 206, 108373. https://doi.org/https://doi.org/10.1016/j.buildenv.2021.108373
    4. Chan, A. L. S. (2011). Energy and environmental performance of building façades integrated with phase change material in subtropical Hong Kong. Energy and Buildings, 43(10), 2947-2955. https://doi.org/https://doi.org/10.1016/j.enbuild.2011.07.021
    5. Chang, C.H., Chuang, M.L., Tan, J.C., Hiseh, C.C., and Chou, C.C. (2022, Nov). Indoor Safety Monitoring for Falls or Restricted Areas Using Wi-Fi Channel State Information and Deep Learning Methods in Mega Building Construction Projects. Sustainability, 14(22), 15034.
    6. Chang, C.H., Tan, J.C., Wang, R.G., Wu, P.Y., and Chou, C.C. (2020, Sep). Sound-based indoor positioning for rescue using deep learning, building information models and virtual reality. Journal of the Chinese Institute of Civil and Hydraulic Engineering, 32(5), 383-392.
    7. Cho, S., Yoo, J.-I., & Chung, H.-S. (1990). The characteristics of heat storage and emission of PCM in Ondol system. Solar Energy, 10(2), 38-43.
    8. Diakaki, C., Grigoroudis, E., Kabelis, N., Kolokotsa, D., Kalaitzakis, K., & Stavrakakis, G. (2010). A multi-objective decision model for the improvement of energy efficiency in buildings. Energy, 35(12), 5483-5496. https://doi.org/https://doi.org/10.1016/j.energy.2010.05.012
    9. Diakaki, C., Grigoroudis, E., & Kolokotsa, D. (2008). Towards a multi-objective optimization approach for improving energy efficiency in buildings. Energy and
    66
    Buildings, 40(9), 1747-1754. https://doi.org/https://doi.org/10.1016/j.enbuild.2008.03.002
    10. Fiorentini, M., Cooper, P., & Ma, Z. (2015). Development and optimization of an innovative HVAC system with integrated PVT and PCM thermal storage for a net-zero energy retrofitted house. Energy and Buildings, 94, 21-32. https://doi.org/https://doi.org/10.1016/j.enbuild.2015.02.018
    11. Fiorentini, M., Cooper, P., Ma, Z., & Robinson, D. A. (2015). Hybrid Model Predictive Control of a Residential HVAC System with PVT Energy Generation and PCM Thermal Storage. Energy Procedia, 83, 21-30. https://doi.org/https://doi.org/10.1016/j.egypro.2015.12.192
    12. George, C. B. (2020). Embodied Carbon Primer. LETI. https://www.leti.uk/ecp
    13. Henryson, J., Håkansson, T., & Pyrko, J. (2000). Energy efficiency in buildings through information – Swedish perspective. Energy Policy, 28(3), 169-180. https://doi.org/https://doi.org/10.1016/S0301-4215(00)00004-5
    14. Hsieh, C.C., Liu, C.Y., Wu, P.Y., Jeng, A.P., Wang, R.G., and Chou, C.C. (2019, Jun). Building information modeling services reuse for facility management for semiconductor fabrication plants. Automation in Construction [SCI], 102, 270-287.
    15. Hu, Y., Guo, R., Heiselberg, P. K., & Johra, H. (2020). Modeling PCM Phase Change Temperature and Hysteresis in Ventilation Cooling and Heating Applications. Energies, 13(23), 6455. https://www.mdpi.com/1996-1073/13/23/6455
    16. Ismail, K., & Castro, J. (1997). PCM thermal insulation in buildings. International journal of energy research, 21(14), 1281-1296.
    17. Jeng, A.P., Wang, R.G., Wu, P.Y., Tai, J.K., Tan, J.C., and Chou, C.C. (2019, Apr). Deep learning-based smart meter data analytics for early warning of possible electrical fires. Journal of the Chinese Institute of Civil and Hydraulic Engineering [EI], 31(2), 193-204.
    18. Jeon, J., Lee, J.-H., Seo, J., Jeong, S.-G., & Kim, S. (2013). Application of PCM thermal energy storage system to reduce building energy consumption. Journal of thermal analysis and calorimetry, 111, 279-288.
    67
    19. Liu, C.Y., Wu, P.Y., Tan, J.C., Chuang, M.L., Wang, R.G., and Chou, C.C. (2021, Dec). An automatic fire rescue deployment method using building information modeling and ontology: Taking long-term care institutes as an example. Journal of the Chinese Institute of Civil and Hydraulic Engineering, 33(8), 641-651.
    20. Kulumkanov, N., Memon, S. A., & Khawaja, S. A. (2024). Evaluating future building energy efficiency and environmental sustainability with PCM integration in building envelope. Journal of Building Engineering, 93, 109413. https://doi.org/https://doi.org/10.1016/j.jobe.2024.109413
    21. Kuznik, F., Virgone, J., & Noel, J. (2008). Optimization of a phase change material wallboard for building use. Applied Thermal Engineering, 28(11), 1291-1298. https://doi.org/https://doi.org/10.1016/j.applthermaleng.2007.10.012
    22. Lencer, D., Salinga, M., Grabowski, B., Hickel, T., Neugebauer, J., & Wuttig, M. (2008). A map for phase-change materials. Nature Materials, 7(12), 972-977. https://doi.org/10.1038/nmat2330
    23. Ma, M., Zhou, N., Feng, W., & Yan, J. (2024). Challenges and opportunities in the global net-zero building sector. Cell Reports Sustainability, 1(8), 100154. https://doi.org/https://doi.org/10.1016/j.crsus.2024.100154
    24. Maccarini, A., Hultmark, G., Bergsøe, N. C., & Afshari, A. (2018). Free cooling potential of a PCM-based heat exchanger coupled with a novel HVAC system for simultaneous heating and cooling of buildings. Sustainable Cities and Society, 42, 384-395. https://doi.org/https://doi.org/10.1016/j.scs.2018.06.016
    25. Maduta, C., D’Agostino, D., Tsemekidi-Tzeiranaki, S., & Castellazzi, L. (2025). From Nearly Zero-Energy Buildings (NZEBs) to Zero-Emission Buildings (ZEBs): Current status and future perspectives. Energy and Buildings, 328, 115133. https://doi.org/https://doi.org/10.1016/j.enbuild.2024.115133
    26. Maglad, A. M., Houda, M., Alrowais, R., Khan, A. M., Jameel, M., Rehman, S. K. U., Khan, H., Javed, M. F., & Rehman, M. F. (2023). Bim-based energy analysis and optimization using insight 360 (case study). Case Studies in Construction Materials, 18, e01755. https://doi.org/https://doi.org/10.1016/j.cscm.2022.e01755
    27. Masood, U., Haggag, M., Hassan, A., & Laghari, M. (2023). Evaluation of phase
    68
    change materials for pre-cooling of supply air into air conditioning systems in extremely hot climates. Buildings, 14(1), 95.
    28. Metallidou, C. K., Psannis, K. E., & Egyptiadou, E. A. (2020). Energy Efficiency in Smart Buildings: IoT Approaches. IEEE Access, 8, 63679-63699. https://doi.org/10.1109/ACCESS.2020.2984461
    29. Mi, X., Liu, R., Cui, H., Memon, S. A., Xing, F., & Lo, Y. (2016). Energy and economic analysis of building integrated with PCM in different cities of China. Applied Energy, 175, 324-336. https://doi.org/https://doi.org/10.1016/j.apenergy.2016.05.032
    30. Mogili, S., Avvari, H. V., & Appecharla, V. K. (2022). Energy Consumption Analysis of Residential Building Using Autodesk Revit. IOP Conference Series: Earth and Environmental Science,
    31. Myint, N. N., Shafique, M., Zhou, X., & Zheng, Z. (2025). Net zero carbon buildings: A review on recent advances, knowledge gaps and research directions. Case Studies in Construction Materials, 22, e04200. https://doi.org/https://doi.org/10.1016/j.cscm.2024.e04200
    32. Osterman, E., Tyagi, V. V., Butala, V., Rahim, N. A., & Stritih, U. (2012). Review of PCM based cooling technologies for buildings. Energy and Buildings, 49, 37-49. https://doi.org/https://doi.org/10.1016/j.enbuild.2012.03.022
    33. Park, J., & Kim, T. (2019). Analysis of the Thermal Storage Performance of a Radiant Floor Heating System with a PCM. Molecules (Basel, Switzerland), 24(7), 1352. https://www.mdpi.com/1420-3049/24/7/1352
    34. Pham, A.-D., Ngo, N.-T., Ha Truong, T. T., Huynh, N.-T., & Truong, N.-S. (2020). Predicting energy consumption in multiple buildings using machine learning for improving energy efficiency and sustainability. Journal of Cleaner Production, 260, 121082. https://doi.org/https://doi.org/10.1016/j.jclepro.2020.121082
    35. Real, A., García, V., Domenech, L., Renau, J., Montés, N., & Sánchez, F. (2014). Improvement of a heat pump based HVAC system with PCM thermal storage for cold accumulation and heat dissipation. Energy and Buildings, 83, 108-116. https://doi.org/https://doi.org/10.1016/j.enbuild.2014.04.029
    69
    36. Reddy, V. J., Ghazali, M. F., & Kumarasamy, S. (2024). Advancements in phase change materials for energy-efficient building construction: A comprehensive review. Journal of Energy Storage, 81, 110494.
    37. Regin, A. F., Solanki, S. C., & Saini, J. S. (2008). Heat transfer characteristics of thermal energy storage system using PCM capsules: A review. Renewable and Sustainable Energy Reviews, 12(9), 2438-2458. https://doi.org/https://doi.org/10.1016/j.rser.2007.06.009
    38. Seong, Y.-B., & Lim, J.-H. (2013). Energy saving potentials of phase change materials applied to lightweight building envelopes. Energies, 6(10), 5219-5230.
    39. Souayfane, F., Fardoun, F., & Biwole, P.-H. (2016). Phase change materials (PCM) for cooling applications in buildings: A review. Energy and Buildings, 129, 396-431. https://doi.org/https://doi.org/10.1016/j.enbuild.2016.04.006
    40. Tae, S., & Shin, S. (2009). Current work and future trends for sustainable buildings in South Korea. Renewable and Sustainable Energy Reviews, 13(8), 1910-1921.
    41. Tai, J.K., Liu, C.Y., Chu, C.P., Wang, S.J., Wang, R.G., and Chou, C.C. (2023, Nov). Automated Spatial Configuration for Indoor Refugee Shelters Using Building Information Modeling and Ontology. Journal of the Chinese Institute of Civil and Hydraulic Engineering, 35(7), 669-680.
    42. Tan, J.C., Chuang, M.L., Chang, C.H., Wang, R.G., and Chou, C.C. (2022, Nov). Preliminary exploration of applying agile project management to compound disaster preparation: Taking the case of finding agile consultants as an example. Journal of the Chinese Institute of Civil and Hydraulic Engineering, 34(7), 649-661.
    43. Tat, S. A., Muthukumar, P., & Mondal, P. K. (2023). Design, development and performance investigations of a latent heat storage with PCM encapsulation. Journal of Energy Storage, 72, 108695. https://doi.org/https://doi.org/10.1016/j.est.2023.108695
    44. Trčka, M., & Hensen, J. L. M. (2010). Overview of HVAC system simulation. Automation in Construction, 19(2), 93-99. https://doi.org/https://doi.org/10.1016/j.autcon.2009.11.019
    45. Vakiloroaya, V., Samali, B., Fakhar, A., & Pishghadam, K. (2014). A review of
    70
    different strategies for HVAC energy saving. Energy conversion and management, 77, 738-754.
    46. Wang, R.G., Ho, W.J., Chiang, K.C., Hung, Y.C., Tai, J.K., Tan, J.C., Chuang, M.L., Ke, C.Y., Chien, Y.F., Jeng, A.P., and Chou, C.C. (2023, Sep). Analyzing Long-Term and High Instantaneous Power Consumption of Buildings from Smart Meter Big Data with Deep Learning and Knowledge Graph Techniques. Energies, 16, 6893.
    47. Wang, R.G., Chuang, M.L., Ke, C.Y., Chien, Y.F., Ho, W.J., Chiang, K.C., Hung, Y.C., Tsai, C.H., and Chou, C.C. (2024, Dec). Predicting Imminent Electrical Safety Incidents Using Smart Meter Big Data With Large Language Models. IEEE Access, 12, 184940.
    48. Wang, S.J., Wang, R.G., Ke, C.Y., Chien, Y.F., Chuang, M.L., and Chou, C.C. (2024, Nov). Exploring and Applying Digital Transformation in the Transportation of Prefabricated Construction Components. Journal of the Chinese Institute of Civil and Hydraulic Engineering, 36(5), 451-459.
    49. Wang, R.G., Wu, P.Y., Liu, C.Y., Tan, J.C., Chuang, M.L., and Chou, C.C. (2022, Jul). Route Planning for Fire Rescue Operations in Long‐term Care Facilities Using Ontology and Building Information Models. Buildings, 12, 1060.
    50. Wang, X., Li, W., Luo, Z., Wang, K., & Shah, S. P. (2022). A critical review on phase change materials (PCM) for sustainable and energy efficient building: Design, characteristic, performance and application. Energy and Buildings, 260, 111923. https://doi.org/https://doi.org/10.1016/j.enbuild.2022.111923
    51. Autodesk Digital Resource Center. (n.d.). GCR Digital Resource Center. https://boards.autodesk.com/cswadi/?utm_source=chatgpt.com&fw=0207d

    QR CODE
    :::