跳到主要內容

簡易檢索 / 詳目顯示

研究生: 謝承翰
Cheng-Han Hsieh
論文名稱: 以超音波感測避障之順從式足型機器人
A Compliant Hexapod Robot with Obstacle-Avoiding Function by Ultrasonic Sensors
指導教授: 鍾鴻源
Hung-Yuan Chung
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
畢業學年度: 97
語文別: 中文
論文頁數: 87
中文關鍵詞: 足型機器人足部定位控制超音波避障
外文關鍵詞: legged robot, foot location control, obstacle avoiding by ultrasonic
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文旨在賦予順從式足型機器人具有避障功能,整個機器人除了原先的架構,本研究另外加裝四組超音波感測模組來偵測環境,幫助達成避障之功能。控制器方面,本研究使用六顆由美國Microchip公司所開發生產的單晶片PIC18F4520以及微控制器AT89S52,採用分工的方式完成所需要的功能。PIC18F為8位元單晶片,在實驗中為足部定位控制器。AT89S52為8位元微控制器,在本實驗中為步態和超音波感測模組之控制器。其中利用單晶片AT89S52來接收來自超音波感測器的訊號並運算出障礙物的距離,以達到避障的功能。


    The goal of this thesis is to implement obstacle avoiding function to the Compliant Hexapod Robot. Except original equipments, we also implement 4 ultrasonic sensors for detecting surrounding environment that it will have obstacle avoiding function. There are 6 single chips adopted from Microchip and 1 microcontroller from Atmel on the robot. The single chip is an 8-bit chip, it controls the leg location. The microcontroller is also an 8-bit chip, it controls gaits and ultrasonic sensors. The distance to obstacles is calculated by the microcontroller according to the signal from ultrasonic sensors.

    目錄 I 圖目錄 V 第一章 緒論 1 1.1前言 1 1.2文獻回顧 2 1.3研究動機 9 1.4章節簡介 10 第二章 理論基礎 11 2.1超音波量測距離原理 11 2.2生物運動的原理 13 第三章 系統架構與功能介紹 16 3.1順從式足型機器人系統方塊圖 16 3.2順從式足型機器人硬體介紹 20 3.2.1足部的轉動與煞車部分 20 3.2.1.1致動器 20 3.2.1.2功率放大電路 22 3.2.1.3繼電器煞車電路      24 3.2.2特殊的足部機構 26 3.2.3足部位置回授部分 27 3.2.4機器人的電源 30 3.2.4.1主要電源 30 3.2.4.2輔助電源 31 3.2.5無線通訊模組 32 3.2.6控制晶片部分 34 3.2.6.1 微控制器AT89S52 35 3.2.6.2 單晶片PIC18F4520 36 3.2.7超音波感測器 38 第四章 步態規劃與避障設計 40 4.1順從式足型機器人控制方法 40 4.1.1控制架構 41 4.1.2足部定位控制核心規劃 42 4.1.2.1命令的傳遞及判斷方式 43 4.1.2.2足部位置回授控制 44 4.1.2.3馬達驅動及煞車 48 4.1.3步態控制核心規劃 55 4.2步態規劃設計 57 4.2.1站立與準備動作 57 4.2.2前進與後退 59 4.2.3轉向步態 61 4.2.4跨越障礙物 63 4.3避障功能設計 65 4.3.1超音波簡介及特性 65 4.3.2超音波的產生與接收 69 4.3.3超音波感測器設置 71 4.3.4障礙物閃避機制 72 第五章 實驗結果與討論 74 5.1偵測障礙物轉向 75 5.2判斷空曠側轉向 76 5.3進入死巷後退離開 77 第六章 結論與建議 78 6.1 結論 78 6.2未來發展及建議 79 參考文獻 81 附錄 84

    [1]Gianluca Antonelli, Stefano Chiaverini, Roberto Finotello, andRiccardo Schiavon, “Real-Time Path Planning and Obstacle Avoidancefor RAIS: An Autonomous Underwater Vehicle”, IEEE Journal of Oceanic Engineering, Vol.26, No.2, pp.216-227, 2001.
    [2]Hideo Mori, Shinji Kotani, and Noriaki Kiyohiro, “A Robotic Travel Aid “HITOMI” ”, Proceedings of the IEEE/RSJ/GI International Conference on Intelligent Robots and Systems, Vol.3, pp.1716-1723, 1994.
    [3]徐肇鴻,導盲機器人之路徑規劃與控制,國立交通大學電機與控制工程系碩士論文,民國88 年。
    [4]HONDA 公司ASIMO,http://www.honda-taiwan.com.tw/asimo/asimointro.html
    [5]SONY 公司QRIO,http://www.sony.net/SonyInfo/QRIO/top_nf.html
    [6]iRobot 公司Roomba,http://www.irobot.com/home.cfm
    [7]日立公司家用清潔機器人,http://kadenfan.hitachi.co.jp/robot/
    [8]Raibert, M., Chepponis, M., and Brown, H.J., “Running on four legs as though they were one", Robotics and Automation, IEEE Journal of [legacy, pre - 1988], vol. 2, no. 2, pp. 70-82, 1986.
    [9]Boggess, M.J., Schroer, R.T., Quinn, R.D. and Ritzmann, R.E., “Mechanized cockroach footpaths enable cockroach-like mobility”, IEEE International Conference on Robotics and Automation, pp.2871-2876, 2004.
    [10]Full, R.J., Kubow, T., Schmitt, J., Holmes, P., and Koditschek, D., “Quantifying dynamic stability and maneuverability in legged locomotion”, Integ and Comp. Biol., 42, pp. 149-157, 2002.
    [11]Akimoto, K., Watanabe, S., and Yano, M., “An insect robot controlled by the emergence of gait patterns,”Artificial Life and Robotics, pp. 102-105, 1999.
    [12]D.M. Wilson, " Insect walking ," Annual Rev. of Entomology, 11,pp.103-122, 1996.
    [13]H. Cruse, Th. Kindermann, M. Schumm, J. Dean, J. Schmitz, "Walknet - abiologically inspired network to control six-legged walking," Neural Networks, 11, 1435-1447, R. Brooks, S. Grossberg (eds.), 1998.
    [14]R.A. Brooks, "A robust layered control system for a mobile robot," IEEE Journal of Robotics and Automation, vol RA-2, No. 1, pp.14-23, March, 1986.
    [15]R.A. Brooks, "A robot that walks:Emergent behaviors from a Carfully evolved network," Neural Computation, No.1,pp.253-62, 1989.
    [16]R.A. Brooks, The Behavior Language ; User’s Guide, MIT A.I. Memo 1227, 1990.
    [17]R. B. McGhee and G. I. Iswandhi, "Adaptive locomotion of a multilegged robot over rough terrain, " IEEE Trans. Syst., Man, Cybern., vol. SMC-9, no. 4, pp. 176–182, 1979
    [18]A. P. Bessonov and N. V. Umnov, " The analysis of gaits in six-legged vehicles according to their static stability," in Proc. Symp. Theory Practice Rob. Manipulat., Udine, Italy,1973.
    [19]Moore, E.Z., Campbell, D., Grimminger, F., Buehler, M., “Reliable Stair Climbing in the Simple Hexapod ‘RHex’”, International Conference on Robotics 8 Automation, pp. 2222-2227, 2002.
    [20]Talebi1, S., Buehler1, M., and Papadopoulos, E., “Towards Dynamic Step Climbing For A Quadruped Robot with Compliant Legs”, 3rd Int. Conf. on Climbing and walking Robots, Madrid, Spain, 2000.
    [21]Cham, J.G., Karpick, J.K., Cutkosky, M.R., “Stride Period Adaptation for a Biomimetic Running Hexapod”, Intl J. of Robotics Res, pp. 1-13, 2004.
    [22]J. M. Yang and J. H. Kim, "A fault tolerant gait for a hexapod robot over uneven terrain, " IEEE Trans. Syst., Man, Cybern., B,vol. 30, pp. 172–180, Feb. 2000.
    [23]郭嘉興,遠端監控功能之順從式足型機器人,國立中央大學電機工程學系碩士論文,2004。
    [24]陳廷熠,順從式足型機器人設計與改良,國立中央大學電機工程學系碩士論文,2007。
    [25]王俊傑,順從式足型機器人足部力量控制設計,國立中央大學電機工程學系碩士論文,2008。
    [26]Gartenhaus, Solomon, Physics: basic principles, New York: Holt, Rinehart and Winston, 1997.

    QR CODE
    :::