| 研究生: |
陳彥廷 Yen-Ting Chen |
|---|---|
| 論文名稱: |
基於開放式ECG與PPG數據之視覺化分析平台設計與實現 Realization of a Visual Analysis Platform Based on Open ECG and PPG Data |
| 指導教授: |
張大中
Dah-Chung Chang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 通訊工程學系 Department of Communication Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 60 |
| 中文關鍵詞: | 一維卷積長短期記憶網路 、心電圖 、心率變異 、光體積變化描記圖 |
| 外文關鍵詞: | 1D-CNN-LSTM, ECG, HRV, PPG |
| 相關次數: | 點閱:6 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本研究中,我們提出了一個結合心電圖(ECG)與心律變異度/自律神經檢測(HRV)分析的綜合系統,旨在提高心血管疾病的早期檢測和預後評估能力。系統利用機器學習技術,特別是一維卷積長短期記憶網路(1D-CNN-LSTM),對ECG信號進行自動檢測、分類和診斷。此外,該系統還對ECG信號進行預處理,包括去噪、信號和基線校正等,以及心律變異度/自律神經檢測(HRV)分析與圖形化顯示。
本研究使用了MIT-BIH心律失常數據庫,該數據庫包含了多種心律失常類型的ECG記錄。我們的方法對心律失常進行了有效的分類和檢測,並對HRV進行了詳細的分析。系統在自動識別心律失常和評估心律變異度方面表現出色,有助於提高診斷準確性和病患管理。
在臨床應用方面,該系統可以作為一個實時監測工具,幫助醫生迅速評估病患的心血管風險,並根據HRV分析結果制定個性化治療方案。此外,該系統可以應用於遠程監測,為居家患者提供及時的醫療幫助和警示。
未來研究方向包括:1) 擴展數據集,包括更多類型的心律失常和病患背景,以提高模型的泛化能力;2) 將其他生物醫學信號(如脈搏波、血壓等)融入系統,實現更全面的心血管健康評估;3) 開發更高效的機器學習算法,提高診斷準確性和計算效能;4) 研究心律變異度與其他生理指標的相互關聯,以揭示更多潛在的臨床信息和疾病機制;5) 探索如何將本系統與移動醫療設備結合,以便病患隨時隨地進行自我監測和獲得專業建議。
綜上所述,本研究提出的ECG與HRV分析系統展示了在心血管疾病檢測和評估方面的巨大潛力。機器學習技術的應用使得系統能夠自動識別和分類心律失常,同時詳細分析心律變異度,為病患提供更精確的診斷和個性化治療建議。未來研究將著重於提高系統的泛化能力、整合其他生物醫學信號,以及開發更高效的機器學習算法和移動醫療應用,為心血管疾病的患者提供更好的照護和改善生活品質。
In this study, we propose an integrated system for the analysis of electrocardiogram (ECG) and heart rate variability (HRV), aiming to improve the early detection and prognostic assessment of cardiovascular diseases. The system employs machine learning techniques, specifically 1D convolutional neural network and long short-term memory (1D-CNN-LSTM), to automatically detect, classify, and diagnose ECG signals. Additionally, the system preprocesses ECG signals, including denoising, signal and baseline correction, as well as HRV analysis and graphical representation.
We utilize the MIT-BIH Arrhythmia Database in this study, which contains ECG records of various types of arrhythmias. Our approach effectively classifies and detects arrhythmias and provides a detailed analysis of HRV. The system performs excellently in automatically identifying arrhythmias and assessing heart rate variability, contributing to enhanced diagnostic accuracy and patient management.
In terms of clinical applications, the system can serve as a real-time monitoring tool, assisting physicians in quickly evaluating patients' cardiovascular risk and formulating personalized treatment plans based on HRV analysis results. Moreover, the system can be applied to remote monitoring, providing timely medical assistance and alerts for home-based patients.
Future research directions include: 1) expanding the dataset, encompassing more types of arrhythmias and patient backgrounds, to improve the model's generalizability; 2) incorporating other biomedical signals (such as pulse wave, blood pressure, etc.) into the system, achieving a more comprehensive assessment of cardiovascular health; 3) developing more efficient machine learning algorithms, enhancing diagnostic accuracy and computational efficiency; 4) investigating the interrelations between HRV and other physiological indicators to reveal additional clinical information and disease mechanisms; 5) exploring how to integrate the system with mobile healthcare devices, allowing patients to self-monitor and obtain professional advice anytime and anywhere.
In summary, the ECG and HRV analysis system proposed in this study demonstrates significant potential in the detection and assessment of cardiovascular diseases. The application of machine learning techniques enables the system to automatically identify and classify arrhythmias while providing a detailed analysis of heart rate variability, offering patients more accurate diagnoses and personalized treatment recommendations. Future research will focus on improving the system's generalizability, integrating other biomedical signals, and developing more efficient machine learning algorithms and mobile healthcare applications to provide better care and improve the quality of life for cardiovascular disease patients.
[1]
George B. Moody. “MIT-BIH Arrhythmia Database Directory.” PhysioNet, 24 May 1997, https://physionet.org/physiobank/database/html/mitdbdir/intro.htm.
[2]
George Moody, and Roger Mark. “MIT-BIH Arrhythmia Database.” PhysioNet, 24 Feb. 2005, MIT-BIH Arrhythmia Database.
[3]
O. EL B’CHARRI*, R. LATIF, A. ABENAOU, W. JENKAL “An efficient wavelet-based feature extraction scheme for electrocardiogram signals.” DOI:10.1109/WITS.2017.7934670 April 2017
[4]
European Heart Journal, Volume 17, Issue 3, March 1996, Pages 354–381, https://doi.org/10.1093/oxfordjournals.eurheartj.a014868
[5]
“Heart Rate Variability Standards of Measurement, Physiological Interpretation, and Clinical Use.” Task Force of The European Society of Cardiology and The North American Society of Pacing and Electrophysiology (1996): 1043–1065. https://doi.org/10.1161/01.CIR.93.5.1043.
[6]
Van Hiep Phung, and Eun Joo Rhee. “A High-Accuracy Model Average Ensemble of Convolutional Neural Networks for Classification of Cloud Image Patches on Small Datasets. ” Oct. 2019, doi:DOI:10.3390/app9214500.
[7]
Amin Ullah. “A Hybrid Deep CNN Model for Abnormal Arrhythmia Detection Based on Cardiac ECG Signal.” Healthcare Monitoring and Management with Artificial Intelligence 2021. https://doi.org/10.3390/s21030951.
[8]
Mahmoud Abdallah, Nhien An Le Khac, Hamed Jahromi, Anca Delia Jurcut.“A Hybrid CNN-LSTM Based Approach for Anomaly Detection Systems in SDNs.” August 2021
[9]
Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-term memory. Neural computation 9, 8 (1997), 1735–1780.
[10]
Taiyong Li, Min Zhou. “ECG Classification Using Wavelet Packet Entropy and Random Forests” DOI:10.3390/e18080285 August 2016Entropy 18(8):285
[11]
Raman Yadav, Sharda Vashisth, Ashok K Salhan. “Real Time Acquisition and Analysis of ECG signals using MATLAB.” ISSN: 2319-1120 January 2010
[12]
J. Pan, and W. J. Tompkins, “A Real-Time QRS Detection Algorithm,” IEEE Trans. Biomed. Eng., Vol. 32, pp. 230-236, 1985.
[13]
Pham, T., Lau, Z. J., Chen, S. H. A., & Makowski, D. (2021). Heart Rate Variability in Psychology: A Review of HRV Indices and an Analysis Tutorial. Sensors, 21(12), 3998. https://doi.org/10.3390/s21123998
[14]
Zhengmin Kong, Yande Cui, Zhou Xia, and He Lv. “Convolution and long short-term memory hybrid deep neural networks for remaining useful life prognostics.” Applied Sciences 9, 19 (2019), 4156.
[15]
Vidushi Mishra, SMT. MANISHA AGARWAL, NEHA PURI. “COMPREHENSIVE AND COMPARATIVE ANALYSIS OF NEURAL NETWORK” DOI:10.26808/rs.ca.i8v2.15 January 2018
[16]
Fawcett, T. “An Introduction to ROC Analysis. Pattern Recogn.” Lett. 2006,27, 861–874. doi:10.1016/j.patrec.2005.10.010.
[17]
M. M. Rodríguez-Hernández, Rosa Eva Pruneda, Juan M. Rodríguez-Díaz. “Statistical Analysis of the Evolutive Effects of Language Development in the Resolution of Mathematical Problems in Primary School Education” DOI:10.3390/math9101081 May 2021
[18]
Testing and Reporting Performance Results of Cardiac Rhythm and ST Segment Measurement Algorithms.Association for the Advancement of Medical Instrumentation: Arlington, VA, USA, 1998
[19]
Streamlit’s open-source app framework [Online]. Available: https://github.com/streamlit/streamlit.git 2023 Snowflake Inc.
[20]
Carreiras C, Alves AP, Lourenço A, Canento F, Silva H, Fred A, et al. BioSPPy - Biosignal Processing in Python, 2015-, [Online]. Available: https://github.com/PIA-Group/BioSPPy/
[21]
Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., ... & SciPy 1.0 Contributors. (2020). SciPy 1.0: fundamental algorithms for scientific computing in python. Nature methods, 17(3), 261-272.
[22]
Tensorflow [Online]. Available: https://www.tensorflow.org/