跳到主要內容

簡易檢索 / 詳目顯示

研究生: 許晉瑋
Chin-wei Hsu
論文名稱: 椎體成型術骨髓針穿刺術前規劃與模擬
指導教授: 賴景義
Jiing-yih Lai
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 92
中文關鍵詞: 椎體成型術骨髓針穿刺術前規劃血管辨識
外文關鍵詞: percutaneous vertebroplasty, path of puncture, surgery planning, vessel identification
相關次數: 點閱:8下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 椎體成型術為目前治療骨質疏鬆所引起之脊椎壓迫性骨折最安全的手術方式,但在決定骨髓針穿刺路徑方面仍有一定的難度,且術中需大量使用C-arm,醫護人員長期暴露在具有放射線的環境下,恐影響身體健康。為協助醫師於術前決定骨髓針穿刺路徑、降低放射線對醫護人員的影響,本研究提出一術前規劃流程,並設計一骨髓針穿刺模擬方式,以電腦輔助醫師進行診斷與模擬骨髓針穿刺路徑,於術前即取得充分的手術資訊,此外更與術中輔助系統結合,運用術前規劃資訊輔助手術進行。本研究以多組案例進行骨髓針穿刺模擬,並實際與術中輔助系統結合,進行豬背骨穿刺試驗,驗證該術前規劃流程的可行性,更驗證運算資料的正確性,確保手術模擬的可信度。以本研究提出之術前規劃流程,能協助醫師於術前更充分了解手術資訊,增加醫師進行手術時的信心,並可望加快手術進行速度與減少術中C-arm的使用次數。


    Percutaneous vertebroplasty is the safest surgical approach to treat vertebral compression fractures caused by osteoporosis, but it is still difficult to determine the path of puncture. The surgeons generally require extensive use of C-arm images during surgery, which will increase the risk of radiation exposure in the long term. In this study, a computer aided preoperative planning system for the percutaneous vertebroplasty is developed, which aims to assist the surgeon to simulate and plan the path of puncture before surgery, and to combine with the intraoperative auxiliary system to reduce the impact of radiation for this kind of surgery. Several examples, including simulated human’s vertebral cases and real pig spine puncture tests are presented, to demonstrate the feasibility of the proposed method. Furthermore, this study demonstrates the accuracy of several kinds of data to ensure the credibility of the proposed surgical simulation method. It is expected that study can assist surgeons to get more information before surgery, and accelerate the operation speed in reducing the excessive use of C-arm images.

    摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VI 表目錄 VIII 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 2 1.3 研究目的與方法 5 1.3.1 研究目的 5 1.3.2 研究方法 8 1.4 論文架構 12 第二章 椎體成型術簡介及術前規劃系統架構 13 2.1 前言 13 2.2 脊椎與脊椎壓迫性骨折介紹 13 2.2.1 脊椎構造 13 2.2.2 脊椎壓迫性骨折 15 2.3 脊椎壓迫性骨折外科手術方式 17 2.3.1 脊椎融合術 17 2.3.2 椎體成型術 18 2.4 椎體成型術術前規劃系統架構 22 2.4.1 椎體成型術手術流程 22 2.4.2 椎體成型術術前規劃流程 26 第三章 椎體成型術術前模擬技術 29 3.1 前言 29 3.2 骨組織區域分離正確性驗證 30 3.3 虛擬X光對網格差別顯示 31 3.3.1 血管自動辨識 31 3.3.2 網格虛擬X光擬真顯示 34 3.4 椎體成型術術前骨髓針穿刺路徑規劃 39 3.4.1 骨髓針穿刺路徑規劃介面設計 39 3.4.2 理想穿刺方向與安全通道 42 3.4.3 皮膚穿刺角度 45 第四章 範例模擬與驗證 50 4.1 前言 50 4.2 區域成長正確性驗證 50 4.3 血管自動辨識驗證 52 4.4 椎體成型術術前規劃 57 4.4.1 術前規劃流程案例測試 57 4.4.2 理想穿刺方向與安全通道驗證 63 4.4.3 豬背骨穿刺試驗 67 第五章 結論與未來展望 74 5.1 結論 74 5.2 未來展望 75 參考文獻 76

    [1] 王順民,黃明發,“關於長期照顧機構管理約制的若干芻議”,國政分析,社會(析)101-006,2012。
    [2] J. W. Hole and K. A. Koos, 人體解剖學, pp. 146-153, 1999.
    [3] R. Carola, J. P. Harley and C. R. Noback, 人體解剖學, pp. 161-168, 1996.
    [4] A. Delisle, M. Gagnon and C. Sicard, “Effect of Pelvic Tilt on Lumbar Spine Geometry”, IEEE Transactions on Rehabilitation Engineering, Vol. 5, No. 4, pp. 360-366, 1997.
    [5] J. Noaillya, H. Wilke, J. A. Planell and D. Lacroix, “How does the Geometry Affect the Internal Biomechanics of a Lumbar Spine Bi-segment Finite Element Model? Consequences on the Validation Process”, Journal of Biomechanics, Vol. 40, pp. 2414-2425, 2007.
    [6] T. S. Keller, C. J. Colloca, D. E. Harrison, D. D. Harrison and T. J. Janik, “Influence of Spine Morphology on Intervertebral Disc Loads and Stresses in Asymptomatic Adults: Implications for the Ideal Spine”, The Spine Journal, Vol. 5, pp. 297- 309, 2005.
    [7] N. Campbell-Kyureghyan, M. Jorgensen, D. Burr and W. Marras, “The Prediction of Lumbar Spine Geometry: Method Development and Validation”, Clinical Biomechanics, Vol. 20, pp. 455-464, 2005.
    [8] M. R. Zindrick, L. L. Wiltse, E. H. Widell, J. C. Thomas, W. R. Holland, B. T. Field and C. W. Spencer, “A Biomechanical Study of Intrapeduncular Screw Fixation in the Lumbosacral Spine”, Clin Orthop, Vol. 203, pp. 99-112, 1986.
    [9] M. R. Zindrick, L. L. Wiltse, E. H. Widell, G. W. Knight, A. G. Patwardhan, J. C. Thomas, S. L. Rothman and B. T. Field, “Analysis of the Morphometric Characteristics of the Thoracic and Lumbar Pedicles”, Spine, Vol. 12, No. 2, pp. 160-166, 1987.
    [10] J. N. Weinstein, B. L. Rydevik and W. Rauschning, “Anatomic and Technical Considerations of Pedicle Screw Fixation”, Clinical Orthopaedics and Related Research, Vol. 284, pp. 34-46, 1992.
    [11] S. S. Madan and R. Boeree, “Comparison of Instrumented Anterior Interbody Fusion with Instrumented Circumferential Lumbar Fusion”, European Spine Journal, Vol. 12, pp. 567-575, 2003.
    [12] T. M. Stoll, G. Dubois and O. Schwarzenbach, “The Dynamic Neutralization System for the Spine: a Multi-center Study of a Novel Non-fusion System”, European Spine Journal, Vol. 11, No. 2, pp. 170-178, 2002.
    [13] N. B. Watts, S. T. Harris and H. K. Genant, “Treatment of Painful Osteoporotic Vertebral Fractures with Percutaneous Vertebroplasty or Kyphoplasty”, Osteoporos Int, Vol. 12, pp. 429-437, 2001.
    [14] F. Grados, C. Depriester, G. Cayrolle, N. Hardy, H. Deramond and P. Fardellone, “Long-Term Observations of Vertebral Osteoporotic Fractures Treated by Percutaneous Vertebroplasty”, The International Society for the Advancement of Spine Surgery, Vol. 3, pp. 118-122, 2009.
    [15] J. Lee, S Kim, Y. S. Kim, W. K. Chung and M. Kim, “Automated Surgical Planning and Evaluation Algorithm for Spinal Fusion Surgery with Three-Dimensional Pedicle Model”, Intelligent Robots and Systems, IEEE/RSJ International Conference on, pp. 2524-2531, 2011.
    [16] D. Schlenzka, J. Tonetti, L. Pittet, M. Coulomb, S. Lavallée, J. Troccaz, P. Cinquin and P. Sautot, “Computer-assisted Spine Surgery”, European Spine Journal, Vol. 9, No. 1, pp. 57-64, 2000.
    [17] F. Gebhard, A. Weidner, U. C. Liener, U. Stöckle and M. Arand, “Navigation at the Spine”, Injury, Vol. 35, pp. 35-45, 2004.
    [18] Q. S. Yin, L. Wan, F. Z. Ai, X. Y. Ma, H. Xia and J. H. Wang, “Computer Aid Designed Digital Targeting Template of Pedicle of Vertebral Arch for Atlantoaxial Nailing”, IEEE International Symposium on, Vol. 1, pp. 6-10, 2009.
    [19] S. Lu, Y. Q. Xu, Y. Z. Zhang, L. Xie, H. Guo and D. P. Li, “A Novel Computer-assisted Drill Guide Template for Placement of C2 Laminar Screws”, European Spine Journal, Vol. 18, No. 9, pp. 1379- 1385, 2009.
    [20] S. M. Samani, M. Yazdi and M. H. Bagheri, “Automatic Identification of Needle’s Entrance Point and Angle in Vertebroplasty”, IEEE International Conference on, pp. 113-118, 2009.
    [21] R. Adams and L. Bischof, “Seeded Region Growing”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 16, No. 6, pp. 641-647, 1994.
    [22] S. C. Zhu and A. L. Yuille , “Region Competition: Unifying Snakes, Region Growing, and Bayes/MDL for Multiband Image Segmentation”, IEEE Trans. Pattern Analysis and Machine Intelligence, Vol. 18, No. 9 , pp. 884-900, 1996.
    [23] T. B. Sebastian, H. Tek, J. J. Crisco, S. W. Wolfe, and B. B. Kimia. “Segmentation of Carpal Bones from 3D CT Images Using Skeletally Coupled Deformable Models”, MICCAI’98, pp. 1184- 1194, 1998.
    [24] N. A. DeVries, E. E. Gassman, N. A. Kallemeyn, K. H. Shivanna, V. A. Magnotta and N. M. Grosland, “Validation of Phalanx Bone Three-dimensional Surface Segmentation from Computed Tomography Images Using Laser Scanning”, Skeletal Radiol, Vol. 37, pp. 35-42, 2008.
    [25] C. S. Mendoza, B. Acha, C. Serrano and T. Gómez-Cía, “Self-assessed Contrast-Maximizing Adaptive Region Growing”, Lecture Notes in Computer Science, vol. 580, pp. 652-663, 2009.
    [26] S. Chaudhuri, S. Chatterjee, N. Katz, M. Nelson and M. Goldbaum, “Detection of Blood Vessels in Retinal Images Using Two-dimensional Matched Filters”, IEEE Transactions on Medical Imaging, Vol. 8, No.3, pp. 263-269, 1989.
    [27] T. Lin and Y. Zheng, “Adaptive Image Enhancement for Retinal Blood Vessel Segmentation”, Electronics Letters, vol. 38, No.19, pp. 1090-1091, 2002.
    [28] M. Levoy, “Display of Surfaces from Volume Data”, IEEE Computer Graphics and Applications, Vol. 8, No. 3, pp. 29-37, 1988.
    [29] R. L. Siddon, “Fast Calculation of the Exact Radiological Path for a Three-dimensional CT Array”, Medical Physics, Vol. 12, No. 2, 1985.
    [30] G. W. Sherouse, K. Novins and E. L. Chaney, “Computation of Digitally Reconstructed Radiographs for Use in Radiotherapy Treatment Design”, International Journal of Radiation Oncology, Vol. 18, No. 3, pp. 651-658, 1990.
    [31] P. Lacroute and M. Levoy, “Fast Volume Rendering Using a Shear-warp Factorization of the Viewing Transformation”, Proceedings of the 21st Annual Conference on Computer Graphics and Interactive Techniques, pp. 451-458, 1994.
    [32] 羅賴鈞,醫學影像之三維顯示與骨組織三角網格重建技術探討,國立中央大學碩士論文,2009。
    [33] J. R. Wu, P. Y. Lee, S. Nicolau, L. Soler, M. Jaoques, L. X. Chen, K. C. Liu and M. L. Wang, “Real-time Advanced Spinal Surgery via Visible Patient Model and Augmented Reality System”, Computer Methods and Programs in Biomedicine, 2013 (Submitted).
    [34] M. L. Wang, J. R. Wu, P. Y. Lee, S. Nicolau, L. Soler, M. Jaoques, L. X. Chen and K. C. Liu, “A Landmark Based Registration Technique for Minimally Invasive Spinal Surgery”, International Society for Computerized Electrocardiology Conference on, 2013(Accepted).
    [35] 林宏哲,椎體成形術之塌陷椎體復位模擬與分析,國立中央大學碩士論文,2013。
    [36] 張紹德,虛擬X光與C-arm影像之模擬技術發展,國立中央大學碩士論文,2011。
    [37] J. T. Tou and R. C. Gonzalez, Pattern Recognition Principles, pp. 219-226, 1974.
    [38] 蔡利海,龍志禕,主軸變換在三維MRI圖像校準中的應用,計算機工程與應用,vol. 24,pp. 74-77,2005。

    QR CODE
    :::