跳到主要內容

簡易檢索 / 詳目顯示

研究生: 李仰騰
Yang-Teng Li
論文名稱: An integrated heralded single photon source based on STIRAP using Ti-PPLN waveguides
指導教授: 陳彥宏
Yen-Hung Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 118
中文關鍵詞: 積體化單光子源晶片自發參量下轉換光源偏振分光器高通濾波器週期式極化反轉結構準相位匹配
外文關鍵詞: Integrated heralded single photon source, PPLN, Stimulated Raman adiabatic passage, Adiabatic coupler, Polarization beam splitter, Pump filter
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,由於量子科學相關研究的快速突破,新世代量子計算及加密通訊在這個時代即將變成可能,然而現今的量子系統多半建立於超導量子位元,其嚴苛的溫度要求、龐大的系統體積以及昂貴的造價仍然嚴重地限制了它的應用潛力。但是以單光子源作為媒介的量子系統卻不受到此限制,不但能夠操作於室溫,並且能夠直接整合於目前成熟的矽光子元件和光纖通訊網路,讓積體量子光路晶片成為可能。

    本研究旨在開發高製程容忍度的積體化鈮酸鋰單光子晶片,包含準相位匹配結構、寬頻波導偏振分光器以及波長濾波器。透過絕熱耦合理論的計算,本研究縮短了以往絕熱偏振分光器的元件長度,同時保留其高製程容忍度以及寬頻運作的特性,並成功地將單光子源整合於同一晶片上。


    In recent years, the explosively growing field of quantum information science has driven a dramatic surge of research into developing single photon sources with high brightness, robustness and scalability. In this work, we have experimentally demonstrated the first fully-integrated heralded single photon source using ti-diffused periodically poled lithiun niobate (PPLN) waveguides. A novel design of ultra-broadband, highly fabrication tolerant PBS and pump filter based on spatial adiabatic passage is proposed. The measured PERs for TE and TM polarizations are greater than 15 dB over a wavelength range of 140 nm and 100 nm, respectively, even in the presence of near 1 µm width deviation. Due to the background noise caused by free space coupling and scattering, the highest PERs are limited to near 15 dB level, which will be further improved by endfacet fiber pigtailing.

    Contents Page 中文摘要 i Abstract ii Acknowledgements iii Contents iv List of figures vi List of tables xiii 1 Introduction 1 1.1 Overview of Single Photon Sources . . . . . . . . . . . . . 1 1.2 Deterministic/Probabilistic Sources . . . . . . . . . . . . 3 1.3 Material Platforms . . . . . . . . . . . . . . . . . . . . . 5 1.4 Integrated Polarization Beam Splitters and Spectral Filters 6 2 Theoretical Background 12 2.1 Electromagnetic Waves in Nonlinear Optical Media . . . . 12 2.1.1 Nolinear Polarization . . . . . . . . . . . . . . . . 12 2.1.2 Wave Equation in Nonlinear Optical Media . . . . 15 2.2 The Coupled-mode Equations of Sum Frequency Generation18 2.2.1 The Coupled-mode Equations of SFG . . . . . . . 18 2.2.2 Phase Matching of SFG . . . . . . . . . . . . . . . 20 2.3 Quasi-phase Matching . . . . . . . . . . . . . . . . . . . . 22 2.4 Quantum Mechanical Description of Spontaneous Parametric Down Conversion . . . . . . . . . . . . . . . . . . 25 iv 2.4.1 Joint Spectrum Amplitude . . . . . . . . . . . . . 25 2.4.2 The Quantum State Generated by SPDC . . . . . 30 2.5 Stimulated Raman Adiabatic Passage . . . . . . . . . . . 35 2.5.1 STIRAP in Atomic Level Systems . . . . . . . . . 36 2.5.2 STIRAP in Evanescently-coupled Waveguide Systems . . . . . . . . . . . . . . . . . . . . . . . . . 40 2.5.3 Polarization Beam Splitters Based on STIRAP . . 41 2.5.4 High-pass Filters Based on STIRAP . . . . . . . . 45 3 Simulations 49 3.1 Polarization Beam Splitters Based on STIRAP . . . . . . 50 3.2 Pump Filters Based on Frequency-swept STIRAP . . . . . 58 4 Experimental Setups 64 5 Fabrication Process 67 5.1 Titanium In-diffusion . . . . . . . . . . . . . . . . . . . . 67 5.2 Electric Field Poling . . . . . . . . . . . . . . . . . . . . . 68 6 Experimental Results and Discussions 72 6.1 Spectral Characteristics of SFG . . . . . . . . . . . . . . 72 6.2 PER and ER Spectra . . . . . . . . . . . . . . . . . . . . 73 6.3 Coincidence Counting . . . . . . . . . . . . . . . . . . . . 82 7 Conclusion and outlook 87 Bibliography 90

    Bibliography
    [1] Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C
    Bardin, Rami Barends, Rupak Biswas, Sergio Boixo, Fernando GSL
    Brandao, David A Buell, et al. Quantum supremacy using a programmable superconducting processor. Nature, 574(7779):505–510,
    2019.
    [2] Feihu Xu, Xiongfeng Ma, Qiang Zhang, Hoi-Kwong Lo, and JianWei Pan. Secure quantum key distribution with realistic devices.
    Reviews of Modern Physics, 92(2):025002, 2020.
    [3] Fulvio Flamini, Nicolo Spagnolo, and Fabio Sciarrino. Photonic
    quantum information processing: a review. Reports on Progress in
    Physics, 82(1):016001, 2018.
    [4] Matthew D Eisaman, Jingyun Fan, Alan Migdall, and Sergey V
    Polyakov. Invited review article: Single-photon sources and detectors. Review of scientific instruments, 82(7):071101, 2011.
    [5] P Ben Dixon, Jeffrey H Shapiro, and Franco NC Wong. Spectral engineering by gaussian phase-matching for quantum photonics. Optics express, 21(5):5879–5890, 2013.
    [6] Agata M Brańczyk, Alessandro Fedrizzi, Thomas M Stace, Tim C
    Ralph, and Andrew G White. Engineered optical nonlinearity for
    quantum light sources. Optics express, 19(1):55–65, 2011.
    [7] H Hu, R Ricken, W Sohler, and RB Wehrspohn. Lithium niobate
    ridge waveguides fabricated by wet etching. IEEE Photonics Technology Letters, 19(6):417–419, 2007.
    [8] Cheng Wang, Michael J Burek, Zin Lin, Haig A Atikian, Vivek
    Venkataraman, I-Chun Huang, Peter Stark, and Marko Lončar. In90
    tegrated high quality factor lithium niobate microdisk resonators.
    Optics express, 22(25):30924–30933, 2014.
    [9] Andrea Guarino, Gorazd Poberaj, Daniele Rezzonico, Riccardo
    Degl’Innocenti, and Peter Günter. Electro–optically tunable microring resonators in lithium niobate. Nature photonics, 1(7):407–410,
    2007.
    [10] Juanjuan Lu, Joshua B Surya, Xianwen Liu, Alexander W Bruch,
    Zheng Gong, Yuntao Xu, and Hong X Tang. Periodically poled thinfilm lithium niobate microring resonators with a second-harmonic
    generation efficiency of 250,000%/w. Optica, 6(12):1455–1460, 2019.
    [11] Gorazd Poberaj, Hui Hu, Wolfgang Sohler, and Peter Guenter.
    Lithium niobate on insulator (lnoi) for micro-photonic devices.
    Laser & photonics reviews, 6(4):488–503, 2012.
    [12] Guangzhen Li, Yuping Chen, Haowei Jiang, and Xianfeng Chen.
    Broadband sum-frequency generation using d 33 in periodically
    poled linbo 3 thin film in the telecommunications band. Optics
    letters, 42(5):939–942, 2017.
    [13] TR Volk, RV Gainutdinov, and HH Zhang. Domain-wall conduction
    in afm-written domain patterns in ion-sliced linbo3 films. Applied
    Physics Letters, 110(13):132905, 2017.
    [14] M Armenise, CLAUDIO Canali, M De Sario, ALBERT Carnera,
    PAOLO Mazzoldi, and GIANCARLO Celotti. Ti compound formation during ti diffusion in linbo 3. IEEE Transactions on Components, Hybrids, and Manufacturing Technology, 5(2):212–216, 1982.
    [15] G Griffiths and R Esdaile. Analysis of titanium diffused planar
    optical waveguides in lithium niobate. IEEE Journal of Quantum
    electronics, 20(2):149–159, 1984.
    [16] Isa Kiyat, Atilla Aydinli, and Nadir Dagli. A compact silicon-oninsulator polarization splitter. IEEE photonics technology letters,
    17(1):100–102, 2004.
    91
    [17] Zisu Gong, Rui Yin, Wei Ji, Junbao Wang, Chonghao Wu, Xiao Li,
    and Shicheng Zhang. Optimal design of dc-based polarization beam
    splitter in lithium niobate on insulator. Optics Communications,
    396:23–27, 2017.
    [18] Hiroshi Fukuda, Koji Yamada, Tai Tsuchizawa, Toshifumi Watanabe, Hiroyuki Shinojima, and Sei-ichi Itabashi. Ultrasmall polarization splitter based on silicon wire waveguides. Optics Express,
    14(25):12401–12408, 2006.
    [19] Daoxin Dai and John E Bowers. Novel ultra-short and ultrabroadband polarization beam splitter based on a bent directional
    coupler. Optics express, 19(19):18614–18620, 2011.
    [20] Sitao Chen, Hao Wu, and Daoxin Dai. High extinction-ratio compact polarisation beam splitter on silicon. Electronics Letters,
    52(12):1043–1045, 2016.
    [21] Hao Wu, Ying Tan, and Daoxin Dai. Ultra-broadband highperformance polarizing beam splitter on silicon. Optics express,
    25(6):6069–6075, 2017.
    [22] Jian Wang, Di Liang, Yongbo Tang, Daoxin Dai, and John E Bowers. Realization of an ultra-short silicon polarization beam splitter with an asymmetrical bent directional coupler. Optics letters,
    38(1):4–6, 2013.
    [23] MK Chin and Seng-Tiong Ho. Design and modeling of waveguidecoupled single-mode microring resonators. Journal of lightwave
    technology, 16(8):1433, 1998.
    [24] Matthew J Collins, Chunle Xiong, Isabella H Rey, Trung D Vo, Jiakun He, Shayan Shahnia, Christopher Reardon, Thomas F Krauss,
    MJ Steel, Alex S Clark, et al. Integrated spatial multiplexing of heralded single-photon source. Nature communications, 4(1):1–7, 2013.
    [25] Jay E Sharping, Kim Fook Lee, Mark A Foster, Amy C Turner,
    Bradley S Schmidt, Michal Lipson, Alexander L Gaeta, and Prem
    Kumar. Generation of correlated photons in nanoscale silicon
    waveguides. Optics express, 14(25):12388–12393, 2006.
    92
    [26] Stéphane Clemmen, K Phan Huy, Wim Bogaerts, Roel G Baets,
    Ph Emplit, and Serge Massar. Continuous wave photon pair generation in silicon-on-insulator waveguides and ring resonators. Optics
    express, 17(19):16558–16570, 2009.
    [27] Nicholas C Harris, Davide Grassani, Angelica Simbula, Mihir Pant,
    Matteo Galli, Tom Baehr-Jones, Michael Hochberg, Dirk Englund,
    Daniele Bajoni, and Christophe Galland. Integrated source of spectrally filtered correlated photons for large-scale quantum photonic
    systems. Physical Review X, 4(4):041047, 2014.
    [28] Stefano Longhi, Giuseppe Della Valle, Marco Ornigotti, and Paolo
    Laporta. Coherent tunneling by adiabatic passage in an optical
    waveguide system. Physical Review B, 76(20):201101, 2007.
    [29] Ricard Menchon-Enrich, Andreu Llobera, Jordi Vila-Planas, Víctor J Cadarso, Jordi Mompart, and Veronica Ahufinger. Light spectral filtering based on spatial adiabatic passage. Light: Science &
    Applications, 2(8):e90–e90, 2013.
    [30] Alexander S Solntsev, Tong Liu, Andreas Boes, Thach G Nguyen,
    Che Wen Wu, Frank Setzpfandt, Arnan Mitchell, Dragomir N Neshev, and Andrey A Sukhorukov. Towards on-chip photon-pair bell
    tests: Spatial pump filtering in a linbo3 adiabatic coupler. Applied
    Physics Letters, 111(26):261108, 2017.
    [31] HP Chung, KH Huang, SL Yang, WK Chang, CW Wu, Frank Setzpfandt, Thomas Pertsch, DN Neshev, and YH Chen. Adiabatic
    light transfer in titanium diffused lithium niobate waveguides. Optics express, 23(24):30641–30650, 2015.
    [32] Pragati Aashna and K Thyagarajan. Polarization splitter based on
    a three waveguide directional coupler using quantum mechanical
    analogies. Journal of Optics, 19(6):065805, 2017.
    [33] Hung-Pin Chung, Chieh-Hsun Lee, Kuang-Hsu Huang, Sung-Lin
    Yang, Kai Wang, Alexander S Solntsev, Andrey A Sukhorukov,
    Frank Setzpfandt, and Yen-Hung Chen. Broadband on-chip polar93
    ization mode splitters in lithium niobate integrated adiabatic couplers. Optics express, 27(2):1632–1645, 2019.
    [34] Theodore H Maiman. Stimulated optical radiation in ruby. nature,
    187(4736):493–494, 1960.
    [35] Robert W. Boyd. Nonlinear Optics, Third Edition. Academic Press,
    Inc., USA, 3rd edition, 2008.
    [36] Amnon Yariv and Pochi Yeh. Optical waves in crystals, volume 5.
    Wiley New York, 1984.
    [37] JA Armstrong, N Bloembergen, J Ducuing, and PS Pershan. Interactions between light waves in a nonlinear dielectric. Physical
    review, 127(6):1918, 1962.
    [38] eg PA Franken, Alan E Hill, CW el Peters, and G Weinreich. Generation of optical harmonics. Physical Review Letters, 7(4):118, 1961.
    [39] David S Hum and Martin M Fejer. Quasi-phasematching. Comptes
    Rendus Physique, 8(2):180–198, 2007.
    [40] XP Hu, P Xu, and SN Zhu. Engineered quasi-phase-matching for
    laser techniques. Photonics Research, 1(4):171–185, 2013.
    [41] Baoqin Chen, Lihong Hong, Chenyang Hu, Chao Zhang, Rongjuan
    Liu, and Zhiyuan Li. Engineering quadratic nonlinear photonic
    crystals for frequency conversion of lasers. Journal of Optics,
    20(3):034009, 2018.
    [42] Robert C. Miller. Optical harmonic generation in single crystal
    batio3. Phys. Rev., 134:A1313–A1319, Jun 1964.
    [43] M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer. Quasiphase-matched second harmonic generation: tuning and tolerances.
    IEEE Journal of Quantum Electronics, 28(11):2631–2654, 1992.
    [44] Yang Ming, Zi-jian Wu, Guo-xin Cui, Ai-hong Tan, Fei Xu, and
    Yan-qing Lu. Integrated source of tunable nonmaximally modeentangled photons in a domain-engineered lithium niobate waveguide. Applied Physics Letters, 104(17):171110, 2014.
    94
    [45] Warren P Grice and Ian A Walmsley. Spectral information and distinguishability in type-ii down-conversion with a broadband pump.
    Physical Review A, 56(2):1627, 1997.
    [46] CK Law, Ian A Walmsley, and JH Eberly. Continuous frequency entanglement: effective finite hilbert space and entropy control. Physical Review Letters, 84(23):5304, 2000.
    [47] Peter J Mosley, Jeff S Lundeen, Brian J Smith, and Ian A Walmsley. Conditional preparation of single photons using parametric downconversion: a recipe for purity. New Journal of Physics,
    10(9):093011, 2008.
    [48] Alan Migdall, Sergey V Polyakov, Jingyun Fan, and Joshua C Bienfang. Single-photon generation and detection: physics and applications. Academic Press, 2013.
    [49] Nikolay V Vitanov, Thomas Halfmann, Bruce W Shore, and Klaas
    Bergmann. Laser-induced population transfer by adiabatic passage
    techniques. Annual review of physical chemistry, 52(1):763–809,
    2001.
    [50] U Gaubatz, P Rudecki, S Schiemann, and K Bergmann. Population
    transfer between molecular vibrational levels by stimulated raman
    scattering with partially overlapping laser fields. a new concept and
    experimental results. The Journal of Chemical Physics, 92(9):5363–
    5376, 1990.
    [51] Max Born and Vladimir Fock. Beweis des adiabatensatzes.
    Zeitschrift für Physik, 51(3-4):165–180, 1928.
    [52] Fred Cooper, Avinash Khare, and Uday Sukhatme. Supersymmetry
    and quantum mechanics. Physics Reports, 251(5-6):267–385, 1995.
    [53] Giuseppe Della Valle, Marco Ornigotti, T Toney Fernandez, Paolo
    Laporta, Stefano Longhi, A Coppa, and V Foglietti. Adiabatic light
    transfer via dressed states in optical waveguide arrays. Applied
    Physics Letters, 92(1):011106, 2008.
    95
    [54] Tommaso Lunghi, Florent Doutre, Alicia Petonela Rambu,
    Matthieu Bellec, Marc P De Micheli, Alin M Apetrei, Olivier Alibart, Nadia Belabas, Sorin Tascu, and Sébastien Tanzilli. Broadband integrated beam splitter using spatial adiabatic passage. Optics Express, 26(21):27058–27063, 2018.
    [55] Hung-Pin Chung, Kuang-Hsu Huang, Kai Wang, Sung-Lin Yang,
    Shih-Yuan Yang, Chun-I Sung, Alexander S Solntsev, Andrey A
    Sukhorukov, Dragomir N Neshev, and Yen-Hung Chen. Asymmetric adiabatic couplers for fully-integrated broadband quantumpolarization state preparation. Scientific Reports, 7(1):1–7, 2017.
    [56] K Bergmann, H Theuer, and BW Shore. Coherent population transfer among quantum states of atoms and molecules. Reviews of Modern Physics, 70(3):1003, 1998.
    [57] Klaas Bergmann, Nikolay V Vitanov, and Bruce W Shore. Perspective: Stimulated raman adiabatic passage: The status after 25
    years. The Journal of chemical physics, 142(17):170901, 2015.
    [58] Ricard Menchon-Enrich, Albert Benseny, Verònica Ahufinger, Andrew D Greentree, Th Busch, and Jordi Mompart. Spatial adiabatic
    passage: a review of recent progress. Reports on Progress in Physics,
    79(7):074401, 2016.
    [59] Bruce W Shore. Picturing stimulated raman adiabatic passage: a
    stirap tutorial. Advances in Optics and Photonics, 9(3):563–719,
    2017.
    [60] Timo A Laine and Stig Stenholm. Adiabatic processes in three-level
    systems. Physical Review A, 53(4):2501, 1996.
    [61] Stefano Longhi. Quantum-optical analogies using photonic structures. Laser & Photonics Reviews, 3(3):243–261, 2009.
    [62] NV Vitanov. Adiabatic population transfer by delayed laser pulses
    in multistate systems. Physical Review A, 58(3):2295, 1998.
    [63] F Dreisow, A Szameit, M Heinrich, S Nolte, A Tünnermann, Marco
    Ornigotti, and Stefano Longhi. Direct observation of landau-zener
    96
    tunneling in a curved optical waveguide coupler. Physical Review
    A, 79(5):055802, 2009.
    [64] Daigao Chen, Xi Xiao, Lei Wang, Ge Gao, Wen Liu, and Qi Yang.
    Broadband, fabrication-tolerant polarization beam splitters based
    on a tapered directional coupler. IEEE Photonics Technology Letters, 28(19):2074–2077, 2016.
    [65] Dawei Wang, Yujie Hu, Wencheng Yue, Youhong Zeng, Zhijuan
    Tu, Yan Cai, Wei Wang, Qing Fang, and Mingbin Yu. Broadband
    and compact polarization beam splitter based on an asymmetrical
    directional coupler with extra optimizing designs. Applied optics,
    58(30):8221–8226, 2019.
    [66] Thomas Meany, Lutfi A Ngah, Matthew J Collins, Alex S Clark,
    Robert J Williams, Benjamin J Eggleton, MJ Steel, Michael J Withford, Olivier Alibart, and Sébastien Tanzilli. Hybrid photonic circuit for multiplexed heralded single photons. Laser & Photonics
    Reviews, 8(3):L42–L46, 2014.
    [67] Xiao-song Ma, Stefan Zotter, Johannes Kofler, Thomas Jennewein,
    and Anton Zeilinger. Experimental generation of single photons via
    active multiplexing. Physical Review A, 83(4):043814, 2011.
    [68] Gregory David Miller. Periodically poled lithium niobate: modeling, fabrication, and nonlinear-optical performance. PhD thesis,
    Stanford university, 1998.
    [69] J Webjorn, J Amin, M Hempstead, P St J Russell, and JS Wilkinson. Electric-field-induced periodic domain inversion in nd/sup 3+/-
    diffused linbo/sub 3. Electronics Letters, 30(25):2135–2136, 1994.
    [70] J Amin, V Pruneri, J Webjörn, P St J Russell, DC Hanna, and
    JS Wilkinson. Blue light generation in a periodically poled ti:
    Linbo3 channel waveguide. Optics communications, 135(1-3):41–
    44, 1997.
    [71] Zeqin Lu, Yun Wang, Fan Zhang, Nicolas AF Jaeger, and Lukas
    Chrostowski. Wideband silicon photonic polarization beamsplitter
    97
    based on point-symmetric cascaded broadband couplers. Optics
    express, 23(23):29413–29422, 2015.
    [72] Fan Zhang, Han Yun, Yun Wang, Zeqin Lu, Lukas Chrostowski, and
    Nicolas AF Jaeger. Compact broadband polarization beam splitter
    using a symmetric directional coupler with sinusoidal bends. Optics
    Letters, 42(2):235–238, 2017.
    [73] Abu Thomas. Photon Pair Sources in Periodically Poled Ti:
    LiNbO3 Waveguides. PhD thesis, Universitätsbibliothek, 2011.
    [74] Marco Bazzan and Cinzia Sada. Optical waveguides in lithium niobate: Recent developments and applications. Applied Physics Reviews, 2(4):040603, 2015.
    98

    QR CODE
    :::