| 研究生: |
林昭宇 Chao-Yu Lin |
|---|---|
| 論文名稱: |
電子迴旋共振化學氣相沉積法調變矽基鍺薄膜應力之研究 Strain-Controlled Germanium Thin Films Grown by Electron Cyclotron Resonance-Chemical Vapor Deposition |
| 指導教授: |
張正陽
Jeng-yang Chang 陳彥宏 Yen-Hung Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 93 |
| 中文關鍵詞: | 電子迴旋共振化學氣相沉積 、矽基鍺薄膜 、應力 |
| 相關次數: | 點閱:19 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究在低溫 (220℃) 的製程環境中,利用電子迴旋共振化學氣相沉積法調變壓縮及拉伸應變於矽基磊晶鍺薄膜。由於光電元件整合在互補式金屬氧化物半導體 (CMOS) 上無法在超過400℃ 的環境下製程,故本研究採用低溫製程,以利於整合元件。除了上述優點之外,本研究方法藉由調整矽基鍺薄膜之應變,進而改變其能隙,研究結果顯示含有拉伸應變的矽基鍺薄膜,其吸收截止波段在1500 nm到1600 nm之間較塊材鍺有更高的吸收係數。
本研究藉由調整製程參數以製備壓縮及拉伸應變鍺薄膜,參數包括工作壓力、主磁場電流及GeH4流速,並利用X光繞射儀、原子力顯微鏡、蝕刻缺陷密度量測法、近紅外光光譜儀等等,探討其薄膜特性及近紅外光波段吸收係數變化。研究結果顯示利用電子迴旋共振化學氣相沉積法可得拉伸應變含量最高為0.17% 的矽基鍺薄膜,其X光繞射半高寬可達646 arcsec,表面粗糙度方均根值為4.9 nm,差排缺陷密度約106 #/cm2。為了進一步提升拉伸應變及改善薄膜磊晶品質,將鍺薄膜進行後退火處理,發現其拉伸應變可提升至0.25%,半高寬降低為 456 arcsec。此外本實驗利用光譜儀量測近紅外光波段壓縮及拉伸應變兩種薄膜的吸收係數,拉伸應變鍺薄膜相較於壓縮應變鍺薄膜在吸收光波長1550 nm時,吸收截止波段紅位移平均可達120 nm,並將此製作成P-I-N結構,量測低負偏壓下吸收係數變化 (Δα/α),其隨著負偏壓上升而增加,Δα/α在負偏壓0至3V為1.3。
We use Electron Cyclotron Resonance-Chemical Vapor Deposition (ECR-CVD) to grow compressive and tensile strained Germanium (Ge) thin films on Silicon (Si) substrate under the low temperature of 220℃ in this research. The fabrication of device on Complementary Metal-Oxide-Semiconductor (CMOS) is only for low temperature less than 400℃, so ECR-CVD is a suitable method to integrate with devices. On the other hand, we can deposit strain-controlled Ge thin films on Si substrate by ECR-CVD. We can use the method to adjust the value of the band gap of Ge. This research indicates that there is a higher absorption coefficient between the wavelength of 1500 nm to 1600 nm compared with bulk Ge.
In this research, we change the parameters of the system of ECR-CVD including working pressure, mail coil current and the flow of GeH4. We measure the thin films by XRD, AFM, EPD , UV spectrophotometer and so on. We analyze the red shift of wavelength and the properties of the Ge thin films on Si. The research indicates the tensile stress of Ge thin films are up to 0.17%. The FWHM is 646 arcsec. The roughness is 4.9 nm and the threading dislocation density is about 106 #/cm2. In order to increase the tensile strain, we post anneal this Ge thin film. The tensile strain enhance to 0.25%. The FWHM become 456 arcsec. We also measure the Ge thin films by UV spectrophotometer. There is a 120 nm red wavelength shift of absorption coefficient in 1550 nm compared with compressive strained Ge. Then we fabricate the P-I-N structure with this Ge thin film. Under reverse bias 0V to 3V, we measure the value 1.3 of variety of absorption coefficient.
1. http://www.weidrupal.com/node/166
2. http://technews.tw/2016/03/28/about-moores-law/
3. http://www.hightech.tw/index.php/2012-06-06-14-12-38/19-mems-nanotechnology/432-nano-materials-character
4. https://zh.wikipedia.org/wiki/光纖通訊
5. Y. Ishikawa and K. Wada, "Germanium for silicon photonics," Thin Solid Films 518, 83-87 (2010).
6. E. M. Conwell, “Properties of Silicon and Germanium: II,” Proceedings of the IRE 46, 1281-1298 (1958).
7. 侯裕瑋, “低溫製備磊晶鍺薄膜及矽基鍺光偵測器,” 國立中央大學光電科學與工程學系碩士論文, 1 (2014).
8. M. Bosi and G. Attolini, "Germanium: Epitaxy and its applications," Progress in Crystal Growth and Characterization of Materials 56, 146-174 (2010).
9. V. Sorianello, L. Colace, G. Assanto, A. Notargiacomo, N. Armani, F. Rossi and C. Ferrari, "Thermal evaporation of Ge on Si for near infrared detectors: Material and device characterization," Microelectronic Engineering 88, 526-529 (2011).
10. A. F. Abd Rahim, M. R. Hashim, N. K. Ali, A. M. Hashim, M. Rusop and M. H. Abdullah, "The evolution of Si-capped Ge islands on Si (100) by RF magnetron sputtering and rapid thermal processing: The role of annealing times," Microelectronic Engineering 126, 134-142 (2014).
11. Y. H., J. H. Yang, S. Kang, D. J. Kim, T. S. Jeong, C. J. Choi, T. S. Kim and K. H. Shim, "Growth of a Ge layer on 8 in. Si (100) substrates by rapid thermal chemical vapor deposition," Materials Science in Semiconductor Processing 21, 58-65 (2014).
12. Z. Zhoua, C. Lia, H. Laia, S. Chena and J. Yub, "The influence of low-temperature Ge seed layer on growth of high-quality Ge epilayer on Si(1 0 0) by ultrahigh vacuum chemical vapor deposition," Journal of Crystal Growth 310, 2508-2513 (2008).
13. V. A. Shah, A. Dobbie, M. Myronov, and D. R. Leadley, “High quality relaxed Ge layers grown directly on a Si(0 0 1) substrate,” Solid-State Electronics 62, 189–194 (2011).
14. Y. Yamamoto, P. Zaumseil, T. Arguirov, M. Kittler and B. Tillack, "Low threading dislocation density Ge deposited on Si (1 0 0) using RPCVD," Solid-State Electronics 60, 2-6 (2011).
15. D. Chen, Z. Xue, X. Wei, G. Wang, L. Ye, M. Zhang, D. Wang and S. Liu, "Ultralow temperature ramping rate of LT to HT for the growth of high quality Ge epilayer on Si (1 0 0) by RPCVD," Applied Surface Science 299, 1-5 (2014).
16. J. Liu, R. C. Aguilera, J. T. Bessette, X. Sun, Xiaoxin Wang, Yan Cai, Lionel C. Kimerling and Jurgen Michel, “Ge-on-Si optoelectronics,” Thin Solid Films 520, 3354-3360 (2012).
17. X. Wang, H. Li, R. Camacho-Aguilera, Y. Cai, L. C. Kimerling, J. Michel, and J. Liu, “Infrared absorption of n-type tensile-strained Ge-on-Si,” Optics Letters 38, 652-654 (2013).
18. R. Kuroyanagi, L. M. Nguyen, T. Tsuchizawa, Y. Ishikawa, K. Yamada, and K. Wada, “Local bandgap control of germanium by silicon nitride stressor,” Optics Express 21, 18553-18557 (2013).
19. K. Oda, K. Tani, S.I. Saito, and T. Ido, ”Improvement of crystallinity by post-annealing and regrowth of Ge layers on Si substrates,” Thin Solid Films 550, 509-514 (2013).
20. J. Liu, D. D. Cannon, K. Wada, Y. Ishikawa, S. Jongthammanurak, D. T. Danielson, J. Michel, and L. C. Kimerling, “Tensile strained Ge p - i - n photodetectors on Si platform for C and L band telecommunications,” Applied Physics Letters 87, 011110 (2005).
21. V. Sorianello, L. Colace, G. Assanto, A. Notargiacomo, N. Armani, F. Rossi, and C. Ferrari, "Thermal evaporation of Ge on Si for near infrared detectors: Material and device characterization," Microelectronic Engineering 88, 526-529 (2011).
22. Y. Ishikawa, and K. Wada, "Germanium for silicon photonics," Thin Solid Films 518, S83-S87 (2010).
23. 莊達人,VLSI製造技術,高立圖書有限公司,民國85 年。
24. J. H. Park and T. S. Sudarshan, “Chemical Vapor Deposition,” Surface Engineering Series 2 (2001).
25. J. Venables, G.D.T. Spiller, and M. Hanbucken, “Nucleation and Growth of Thin films,” Reports on Progress in Physics 47, 399-459 (1984).
26. A. Matsuda, M. Takai, T. Nishimoto, and M. Kondo, "Control of plasma chemistry for preparing highly stabilized amorphous silicon at high growth rate," Solar Energy Materials and Solar Cells 78, 3-26 (2003).
27. M. Bosi, and G. Attolini, "Germanium: Epitaxy and its applications," Progress in Crystal Growth and Characterization of Materials 56, 146-174 (2010).
28. Y. Bogumilowicz, J.M. Hartmann, C. D. Nardo, P. Holliger, A. M. Papon, G. Rolland, and T. Billon, "High-temperature growth of very high germanium content SiGe virtual substrates," Journal of Crystal Growth 290, 523-531 (2006).
29. D. Chen, Z. Xue, X. Wei, G. Wang, L. Ye, M. Zhang, D. Wang, and S. Liu, "Ultralow temperature ramping rate of LT to HT for the growth of highquality Ge epilayer on Si (1 0 0) by RPCVD," Applied Surface Science 299, 1-5 (2014).
30. J. Mantey, W. Hsu, J. James, E. U. Onyegam, S. Guchhait ,and S. K. Banerjee, "Ultra-smooth epitaxial Ge grown on Si (001) utilizing a thin C-doped Ge buffer layer," Applied Physic Letters 102, 192111 (2013).
31. D. Leonhardt, S. Ghosh, and S. M. Han, "Defects in Ge epitaxy in trench patterned SiO2 on Si and Ge substrates," Journal of Crystal Growth 335, 62-65 (2011).
32. 汪建民, “材料分析 Materials Analysis,” 中國材料科學協會 材料科學叢書2 (1998).
33. J. A. Thornton, and D. W. Hoffman, “Stress-Related Effects in Thin Films,” Thin Solid Films 171, 5-31 (1989).
34. D. Chen, Z. Xue, X. Wei, G. Wang, L. Ye, M. Zhang, D. Wang, and S. Liua, “Ultralow temperature ramping rate of LT to HT for the growth of high quality Ge epilayer on Si (100) by RPCVD,” Applied Surface Science 299, 1-5 (2014).
35. Y. Ishikawa, K. Wada, D.D. Cannon, J.F. Liu, H.C. Luan, and L.C. Kimerling, Applied Physics Letters 82, 2044 (2003).
36. J.M. Hartmann, A.M. Papon, V. Destefanis, T. Billon, and J. Cryst, Growth 310, 5287 (2008).
37. https://zh.wikipedia.org/wiki/法蘭茲 - 卡爾迪西效應
38. T. H. Chang, C. Chang, Y. H. Chu, C. C. Lee, J.Y. Chang, I. C. Chen, and T. T. Li, “Low Temperature (180℃) Growth of Smooth Surface Germanium Epilayers on Silicon Substrates Using Electron Cyclotron Resonance Chemical Vapor Deposition,” International Journal of Photoenergy 2014 (2014).
39. J. Villain, "Physics of Crystal Growth," Campridge Univ Press (1998).
40. 葉哲宏, “利用ECRCVD於低溫成長磊晶矽薄膜之製程參數與腔體環境研究”, 國立中央大學機械工程學系論文 (2015).
41. 謝泓火奇, “低溫製備矽基鍺磊晶薄膜及矽基鍺緩衝層砷化鎵薄膜之研究”, 國立中央大學材料科學系論文 (2015).
42. J.M. Hartmann, et al., Journal of Crystal Growth 312, 532-541 (2010).