跳到主要內容

簡易檢索 / 詳目顯示

研究生: 盧建均
CHIEN-CHUN Lu
論文名稱: 微量銅添加於錫銲點對電遷移效應的影響及
study solder electromigration
指導教授: 劉正毓
chienyi Liu
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程與材料工程學系
Department of Chemical & Materials Engineering
畢業學年度: 92
語文別: 中文
論文頁數: 48
中文關鍵詞: 鎳墊層微量銅電遷移效應銲點
外文關鍵詞: electromigration, solder
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要分成兩個部分研究高電流密度對於接點的效應:第一部分,微量銅{X=0,0.7,3.0(wt%)}添加於銲點錫中進行通電下的觀察。添加0.7銅wt%的Sn0.7Cu銲料將有最嚴重的電遷移效應,原因是Sn0.7Cu銲料具有較小的晶粒,及較小的材料「拉伸強度」。添加3.0銅wt%的Sn3.0Cu銲料,因為具有近竹節狀結構,而減緩晶界擴散的路徑,此外,Sn3.0Cu銲料的「拉伸強度」比Sn0.7Cu銲料高,也有效減緩電遷移的效應。並且,由電遷移造成原子擴散的通量,我們可以計算出不同合金的DZ*值。
    在加熱的加速實驗下,環氧樹酯與銲料的材料膨脹係數不同,因而產生了一個應力,此外加熱應力結合通電時所產生的應力,在負極端造成加乘的拉應力效果,而導致有破裂現象在陰極端產生,這是一個我們提出新的失效模式。整體而言,本論文針對合金添加,長度效應,及熱效應下進行分析並提出我們的解釋。第二部分,在高溫下,通以電流密度2.5x103amp/cm2,鎳金屬的消耗行為已經研究出來,消耗行為為對時間的關係,是遵循一次線性模式。在電流衝擊下鎳消耗活化能為0.723eV。其次,綜合觀察銲點內的介金屬化合物行為的生成,提出以下三點結論。(1)在不同溫度電流衝擊下,界面上介金屬化合物會生成一層連續層,在生長速率上,並不會隨著時間有明顯的生長行為,此與純固態反應行為有很大不同。(2)在電流衝擊下,界面上之緩慢介金屬生成,是由於電流效應造成的溶解機制,介金屬會因溶解,並脫離界面進入銲料中,聚集粗化。(3)在電流衝擊與熱處理比較下,電流不會改變界金物的生成種類,在銲料與界面中,介金屬生成為Ni3Sn4。


    第一部份:微量銅對於銲點電遷移效應的影響 第壹章、緒論................................................................. 1 第貳章、實驗方法與步驟....................................................... 3 2-1 錫銅合金製備............................................................. 4 2-2 銲料導線(solder line)製作................................................ 4 第參章、實驗結果 3-1 銲料導線的表面型態觀察................................................... 5 3-2 添加銅的效應............................................................. 5 3-3 長度的效應............................................................... 6 3-4 100℃下通電的效應........................................................ 6 第肆章、討論. 4-1 銅添加的效應探討........................................................ 12 4-2 不同合金DZ*值的計算..................................................... 16 4-3 長度的效應.............................................................. 20 4-4 熱造成應力的效應........................................................ 21 第伍章、結論................................................................ 25 第二部份: 鎳金屬墊層在電遷移效應下消耗行為的研究 第壹章、緒論................................................................ 26 第貳章、實驗方法與步驟...................................................... 28 2-1 錫球製備................................................................ 28 2-2 鎳通電試片製備.......................................................... 28 2-3 電遷移通電裝置.......................................................... 28 第參章、實驗結果.............................................................30 3-1 鎳通電試片的界面剖面觀察................................................ 30 3-2 不同溫度下鎳墊層消耗的觀察...............................................30 3-3 EPMA 組成分析........................................................... 31 第肆章、結果與討論.......................................................... 35 4-1 動力學探討.............................................................. 35 4-2 電流下活化能探討........................................................ 36 4-3 單純熱處理下的消耗比較與探討............................................ 37 第伍章、結論................................................................ 43 附錄A、DZ*計算.............................................................. 44 參考文獻

    1.V. B. Fiks, Soviet Physics – Solid State, Vol. 1, pp. 14-28, 1959.
    2.S. Brandenbery and S. Yeh, in Proceedings of the Surface Mount
    International Conference and Exposition, SMI 98, San Jose, CA August
    pp. 337-344,1998.
    3.Tu K.N, Recent advances on electromigration in VLSI of interconnects,
    JAP, Vol. 94 (9) pp. 5451-5473 , 2003.
    4.R. Rosenberg, J. Vac. Sci. Technol. 9, 289 ,1972.
    5.曾偉志著『多層組內連線中的電遷移及應力遷移現象』,電子月刊,
    第二卷第六期,p. 80,1996。
    6.F. M. d’Heure and R. Rosenberg, in “Physics of Thin Films,” Academic
    Press, New York vol. 7, p. 257, 1973.
    7.J. Madeni, S. Liu, and T. Siewert, Material Solutions;Joining Advanced
    Specialty Materials IV Materials Park,OH: ASM International, pp.
    33–38. , 2001
    8.Welco Castings, Solder Data Sheet (Ontario, Canada:Welco Castings).
    9.D.R. Frear, S.N. Burchett, H.S. Morgan, and J.H. Lau,eds., The Mechanics
    of Solder Alloy Interconnects (NewYork: Van Nostrand Reinhold, p. 60. ,
    1994.
    10. M. Y. Hsieh and H. B. Huntington, Journal of Physics and Chemistry of
    Solids,Vol. 39, pp. 867-871, 1978.
    11.D. A. Golopentia and H. B. Huntington, Journal of Physics and
    45
    Chemistry ofSolids, Vol. 39, pp. 975-984, 1978.
    12. H. Nakajima and H. B. Huntington, Journal of Physics and Chemistry of
    Solids,Vol. 42, pp. 171-184, 1981.
    13. C. K. Hu and H. B. Huntington, Physical Review B, Vol. 26(6), pp.
    2782-2789, 1982.
    14. D. C. Yeh and H. B. Huntington, Physical Review Letters, Vol. 53(15),
    pp.1469-1472, (1984).
    15.H. B. Huntington, C. K. Hu, and S. N. Mei, in "Diffusion in Solids:
    RecentDevelopments", edited by M. A. Dayanada and G. E. Murch,
    TMS, Warrendale,PA, pp. 97-119, (1984).
    16.E. M. Davis, W. E. Harding, R. S. Schwartz and J. J.Corning, IBM J. Res.
    Develop., 8, p. 102, 1964.
    17. J. Shi and H. B. Huntington, Journal of Physics and Chemistry of Solids,
    Vol. 48,pp. 693-696, (1987).
    18. P. S. Ho and T. Kwok, Reports on Progress in Physics, Vol. 52(3), pp.
    301-348,(1989).
    19. Lee, T. Y., Tu, K. N., Kuo, S. M., and Frear, D. R., Journal of Applied
    Physics, vol. 89( 6) , pp. 3189-3194,2001.
    20. Lee, T. Y. and Tu, K. N., Journal of Applied Physics, vol. 90( 9) , pp.
    4502-4508,2001.
    21. Y. Hua, B. Cemal and H. Douglas, International Journal of Solids and
    Structures Vol 40(15), pp. 4021-4032 ,2003.
    22. I.A. Blech, J. Appl. Phys. 47, 1203 ,1976.
    46
    23. K.L. Lee, C.K. Hu, and K.N. Tu, J. Appl. Phys. 78, 4428,1995.
    24. J. Madeni, S. Liu, and T. Siewert, Material Solutions; Joining Advanced
    Specialty Materials IV (Materials Park, OH: ASM International, pp.
    33–38, 2001.
    25. K.L. Lee, C.K. Hu, and K.N. Tu, J. Appl. Phys. 78, 4428,1995.
    26. C. Zweben and K. A. Schmidt, Section Editors and Authors, "Advanced
    Composite Packaging Materials", Electronic Materials Handbook, ASM
    International, Materials Park, Ohio, 1989.
    27. J. Lau, C. Chang, R. Lee, T.-Y. Chen, D. Cheng, T.J. Tseng, D. Lin,
    "Thermal-Fatigue Life of Solder Bumped Flip Chip on Micro Via-In-Pad
    (VIP) Low Cost Substrates"
    28. J.H. Lau and S.-W. Ricky Lee, "Fracture Mechanics Analysis of Low
    Cost Solder Bumped Flip Chip Assemblies with Imperfect Underfills,"
    Proceedings: NEPCON West Conference (February 28 – March 2, 1995),
    Anaheim, CA .
    29. P. A. Totta and R. P. Sopher, “SLT device metallurgy and its monolithic
    extension,” IBM J. Res. Dev., 13, 226 ,1969.
    30. B. S. Berry and I. Ames, “Studies of the SLT chip terminal metallurgy,”
    IBM J. Res. Dev., 13, 286, 1969.
    31. Y. H. Lin, Y. C. Hu, Johnson Tsai, and C. Robert Kao, Int’l Symposium
    on electronic Materials and Packaging pp.253-258,2002.
    32. 徐敏雯碩士論文,中央機械工程所,1998.
    33. 陳琪碩士論文,國立中央大學化工所,1999.
    34. 蕭本俐碩士論文,國立中央大學化工所,2000.
    35. D. Gur and M. Bamberger, Acta Meter., 46, p.4917, 1998.
    36. 陳志銘博士論文,國立清華大學化工所,2001.

    QR CODE
    :::