| 研究生: |
蕭千城 Chien-Cheng Hsiao |
|---|---|
| 論文名稱: |
工業區含氧有機氣體對空氣品質的可能影響 Possible impact of industrial OVOC on air quality |
| 指導教授: |
王家麟
Jia-Lin Wang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學學系 Department of Chemistry |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 146 |
| 中文關鍵詞: | 光化測站 、揮發性有機氣體 、含氧揮發性有機氣體 、臭氧生成潛能 、最大增量反應 |
| 外文關鍵詞: | PAMS, VOC, OVOC, OFP, MIR |
| 相關次數: | 點閱:8 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
臭氧污染為「區域性的問題」,從前驅物VOCs及NOx之排放經光化學反應到臭氧產生與累積的尖峰通常差距2~6小時,在此時間內前驅物及臭氧易受到風的影響而傳輸至下風處,因此臭氧污染的影響範圍往往擴及都會區或工業區之下風郊區。但由於不同都會區VOCs、NOX來源及排放的特性(種類與強度)不同,且氣候、地形條件存在著很大的差異,因此在臭氧生成方面也有很大的不同及變異。
近地表臭氧為多數先進國家檢視空氣汙染的重點指標之一(Pollutant standard index, PSI),與懸浮微粒同存影響國內空氣品質最顯著的汙染物。近地表臭氧為二次汙染物,為前驅物質NOX和揮發性有機化合物(Volatile organic compounds, VOCs)經由光化反應而生成,但VOCs的種類繁多,且各物種對於臭氧生成的貢獻有所差異,因此在不同環境下,其臭氧生成的機制與特徵也隨之變化。在此選擇桃園地區進行觀測實驗,以即時觀測搭配採樣的方式,分析55種VOCs物質,以探討該地區近地表臭氧的來源,可作為訂立排放管制政策的參考。
桃園地區的VOCs排放結構較為複雜,涵蓋了交通源及工業源兩類,研究中發現交通源中之乙烯、丙烯、1, 2, 4-三甲基苯對於臭氧生成的貢獻較為顯著,相較於此,工業源的OVOC比例亦相當明顯,說明了該地區為複合型的VOCs排放特性。而藉由PTR-MS的觀測,獲得工業區的乙醛(acetaldehyde)濃度變化趨勢,本研究並引用各VOCs的最大增量反應性(Maximum incremental reactivity, MIR)加以計算,求得各VOCs物種的臭氧生成潛勢,並證實了醛類為該地區臭氧生成的重要物質之一。
為求了解醛類與各VOCs貢獻生成臭氧的重要性,藉由模式模擬來統整桃園地區之醛類排放量分佈情形,並輔助說明傳輸與化學機制過程,來剖析這些前驅物對於臭氧生成的貢獻量與影響的幅員範圍。觀測數據與模式模擬相輔相成,有助於全貌了解桃園地區臭氧生成,進而提供適切的管制策略,改善當地空氣品質。
Near-surface ozone is one of the key pollutants in most countries. Ozone is a secondary pollutant produced from photochemistry. It is formed via reactions involving NOX and volatile organic compounds (VOCs) in the presence of sunlight. NOx and VOCs together are called “ozone precursors”. Therefore, the abatement of precursors at minimum social and economical cost will be the key to reduce surface ozone and to improve air quality. However, VOCs are a collective term composing hundreds of thousands of airborne compounds with a wide range of ozone formation potentials (OFPs). As a result, it is not only economically viable but also sensible to only target species of high OFPs and abundance.
VOCs emissions in the Taoyuan area consist of two major sources of traffic and industrial emissions. As a key part of a collective field campaign aiming at reducing ozone in Taoyuan county, an on-line VOCs monitoring system was set up in Taoyuan city during 9/14/2012 - 11/23/2012 to investigate the composition and levels of more than 50 VOCs in a traffic ridden environment with hourly resolution. Moreover, off-line flask sampling in seven surrounding industrial parks was also performed to shed light to VOCs of industrial nature.
Two methods of maximum incremental reactivity (MIR) and relative consumption were used to reveal the critical VOCs to form ozone. High OFP VOCs such as propylene, ethylene and 1,2,4-trimethylbenzene were found to be significant with the city measurements. In the industrial parks, high levels of oxygenated VOCs (OVOC), especially acetaldehyde were observed. In one example (中壢工業區), OVOC can contribute more than 70% of the total VOCs level, and acetaldehyde alone can contribute as high as 80% in ozone formation. As a result, the role of ambient aldehyde as a primary pollutant and its possible removal from the industrial processes due to its strong OFP and toxicity is worth investigation.
Arey, J., Winer, A.M., Atkinson, R., Aschmann, S.M., Long, W.D., Morrison, C.L., Olszyk, D.M., 1991. Terpenes emitted from agricultural species found in California's Central Valley. J. Geophys. Res., [Atmos.] 96, 9329-9336.
Atkinson, R., 2000. Atmospheric chemistry of VOCs and NOx. Atmos. Environ. 34, 2063-2101.
Atkinson, R., Arey, J., 2003. Atmospheric Degradation of Volatile Organic Compounds. Chem. Rev. 103, 4605-4638.
Atkinson, R., Arey, J., 2006. Identification and atmospheric reactions of polar products of selected aromatic hydrocarbons.
Beevers, S.D., Westmoreland, E., de Jong, M.C., Williams, M.L., Carslaw, D.C., 2012. Trends in NOx and NO2 emissions from road traffic in Great Britain. Atmos. Environ. 54, 107-116.
Borbon, A., Gilman, J.B., Kuster, W.C., Grand, N., Chevaillier, S., Colomb, A., Dolgorouky, C., Gros, V., Lopez, M., Sarda-Esteve, R., Holloway, J., Stutz, J., Petetin, H., McKeen, S., Beekmann, M., Warneke, C., Parrish, D.D., de Gouw, J.A., 2013. Emission ratios of anthropogenic volatile organic compounds in northern mid-latitude megacities: Observations versus emission inventories in Los Angeles and Paris. J. Geophys. Res., [Atmos.] 118, 2041-2057.
Bowman, F.M., Seinfeld, J.H., 1994. Ozone productivity of atmospheric organics. J. Geophys. Res., [Atmos.] 99, 5309-5324.
Bruhl, R.J., Linder, S.H., Sexton, K., 2013. Case Study of Municipal Air Pollution Policies: Houston’s Air Toxic Control Strategy under the White Administration, 2004–2009. Environ. Sci. Technol 47, 4022-4028.
Bruner, F., Crescentini, G., Mangani, F., Lattanzi, L., 1990. Capillary gas chromatography with graphitized carbon black. J. Chromatogr., A 517, 123-129.
Cao, X.-L., Hewitt, C.N., 1993. Thermal desorption efficiencies for different adsorbate/adsorbent systems typically used in air monitoring programmes. Chemosphere 27, 695-705.
Carter, W.P.L., 1991. Development of ozone reactivity scales for volatile organic compounds. Univ. California, p. 130 pp.
Carter, W.P.L., 2010. Updated Maximum Incremental Reactivity Scale and Hydrocarbon Bin. Reactivities for Regulatory Applications.
Carter, W.P.L., Atkinson, R., 1989. Computer modeling study of incremental hydrocarbon reactivity. Environ. Sci. Technol 23, 864-880.
Cetin, E., Odabasi, M., Seyfioglu, R., 2003. Ambient volatile organic compound (VOC) concentrations around a petrochemical complex and a petroleum refinery. Sci. Total Environ. 312, 103-112.
Chameides, W.L., Fehsenfeld, F., Rodgers, M.O., Cardelino, C., Martinez, J., Parrish, D., Lonneman, W., Lawson, D.R., Rasmussen, R.A., Zimmerman, P., Greenberg, J., Mlddleton, P., Wang, T., 1992. Ozone precursor relationships in the ambient atmosphere. J. Geophys. Res., [Atmos.] 97, 6037-6055.
Chang, C.-C., OuYang, C.-F., Wang, C.-H., Chiang, S.-W., Wang, J.-L., 2010. Validation of in-situ measurements of volatile organic compounds through flask sampling and gas chromatography/mass spectrometry analysis. Atmos. Environ. 44, 1301-1307.
Chang, C.-C., Wang, J.-L., Candice Lung, S.-C., Liu, S.-C., Shiu, C.-J., 2009. Source characterization of ozone precursors by complementary approaches of vehicular indicator and principal component analysis. Atmos. Environ. 43, 1771-1778.
Chen, S.-P., Liu, T.-H., Chen, T.-F., Yang, C.-F.O., Wang, J.-L., Chang, J.S., 2010. Diagnostic Modeling of PAMS VOC Observation. Environ. Sci. Technol 44, 4635-4644.
Clark, L.P., Millet, D.B., Marshall, J.D., 2011. Air Quality and Urban Form in U.S. Urban Areas: Evidence from Regulatory Monitors. Environ. Sci. Technol 45, 7028-7035.
Clementschitsch, F.B., Karl, 2006. Improvement of bioprocess monitoring: development of novel concepts. Microbial Cell Factories 5, 19.
Cody, R.P., Weisel, C.P., Birnbaum, G., Lioy, P.J., 1992. The effect of ozone associated with summertime photochemical smog on the frequency of asthma visits to hospital emergency departments. Environ. Res. 58, 184-194.
Committee on Tropospheric Ozone, N.R.C., 1991. Rethinking the Ozone Problem in Urban and Regional Air Pollution. The National Academies Press.
Cunnold, D., Alyea, F., Prinn, R., 1978. A methodology for determining the atmospheric lifetime of fluorocarbons. Journal of Geophysical Research: Oceans 83, 5493-5500.
de Gouw, J.A., Goldan, P.D., Warneke, C., Kuster, W.C., Roberts, J.M., Marchewka, M., Bertman, S.B., Pszenny, A.A.P., Keene, W.C., 2003. Validation of proton transfer reaction-mass spectrometry (PTR-MS) measurements of gas-phase organic compounds in the atmosphere during the New England Air Quality Study (NEAQS) in 2002. J. Geophys. Res., [Atmos.] 108, 4682.
Deans, D.R., 1965. An improved technique for back-flushing gas chromatographic columns. J. Chromatogr., A 18, 477-481.
Deans, D.R., 1968. A new technique for heart cutting in gas chromatography [1]. Chromatographia 1, 18-22.
Deans, D.R., 1981. Use of heart cutting in gas chromatography: A review. J. Chromatogr., A 203, 19-28.
Dewulf, J., Van Langenhove, H., 1999. Anthropogenic volatile organic compounds in ambient air and natural waters: a review on recent developments of analytical methodology, performance and interpretation of field measurements. J. Chromatogr., A 843, 163-177.
Geneva, 1995. Schizophrenia and public health, in: Abuse, D.o.M.H.a.P.o.S. (Ed.).
Grewe, V., Dahlmann, K., Matthes, S., Steinbrecht, W., 2012. Attributing ozone to NOx emissions: Implications for climate mitigation measures. Atmos. Environ. 59, 102-107.
Gunnar, T., Engblom, C., Ariniemi, K., 2007. Pressure-adjusted continual flow heart-cutting for the high throughput determination of amphetamine-type stimulant drugs in whole blood by fast multidimensional gas chromatography–mass spectrometry. J. Chromatogr., A 1166, 171-180.
Helmig, D., 1999. Air analysis by gas chromatography. J. Chromatogr., A 843, 129-146.
Kim, K.-H., Shon, Z.-H., Kim, M.-Y., Sunwoo, Y., Jeon, E.-C., Hong, J.H., 2008. Major aromatic VOC in the ambient air in the proximity of an urban landfill facility. Journal of Hazardous Materials 150, 754-764.
Koren, H.S., Devlin, R.B., Graham, D.E., Mann, R., McGee, M.P., Horstman, D.H., Kozumbo, W.J., Becker, S., House, D.E., et, a., 1989. Ozone-induced inflammation in the lower airways of human subjects. Am. Rev. Respir. Dis. 139, 407-415.
Kornacki, W., Fastyn, P., Gierczak, T., Gawłowski, J., Niedzielski, J., 2006. Reactivity of Carbon Adsorbents Used to Determine Volatile Organic Compounds in Atmospheric Air. Chromatographia 63, 67-71.
Król, S., Zabiegała, B., Namieśnik, J., 2010. Monitoring VOCs in atmospheric air II. Sample collection and preparation. TrAC Trends in Analytical Chemistry 29, 1101-1112.
Lin, T.-Y., Sree, U., Tseng, S.-H., Chiu, K.H., Wu, C.-H., Lo, J.-G., 2004. Volatile organic compound concentrations in ambient air of Kaohsiung petroleum refinery in Taiwan. Atmos. Environ. 38, 4111-4122.
Louie, P.K.K., Ho, J.W.K., Tsang, R.C.W., Blake, D.R., Lau, A.K.H., Yu, J.Z., Yuan, Z., Wang, X., Shao, M., Zhong, L., VOCs and OVOCs distribution and control policy implications in Pearl River Delta region, China. Atmos. Environ.
Lu, C.-J., Zellers, E.T., 2001. A Dual-Adsorbent Preconcentrator for a Portable Indoor-VOC Microsensor System. Analytical Chemistry 73, 3449-3457.
Middleton, J.T., Kendrick, J.B.J., Schwalm, H.W., 1950. Injury to herbaceous plants by smog or air pollution. Journal Name: Plant Dis.; (United States); Journal Volume: 34:9, Medium: X; Size: Pages: 245-252.
Monod, A., Sive, B.C., Avino, P., Chen, T., Blake, D.R., Sherwood Rowland, F., 2001. Monoaromatic compounds in ambient air of various cities: a focus on correlations between the xylenes and ethylbenzene. Atmos. Environ. 35, 135-149.
Muezzinoglu, A., Odabasi, M., Onat, L., 2001. Volatile organic compounds in the air of Izmir, Turkey. Atmos. Environ. 35, 753-760.
Na, K., Kim, Y.P., Moon, K.C., Moon, I., Fung, K., 2001. Concentrations of volatile organic compounds in an industrial area of Korea. Atmos. Environ. 35, 2747-2756.
Na, K., Pyo Kim, Y., 2007. Chemical mass balance receptor model applied to ambient C2–C9 VOC concentration in Seoul, Korea: Effect of chemical reaction losses. Atmos. Environ. 41, 6715-6728.
O'Hara, D., Singh, H.B., 1988. Sensitive gas chromatographic detection of acetaldehyde and acetone using a reduction gas detector. Atmospheric Environment (1967) 22, 2613-2615.
Parrish, D.D., Stohl, A., Forster, C., Atlas, E.L., Blake, D.R., Goldan, P.D., Kuster, W.C., de Gouw, J.A., 2007. Effects of mixing on evolution of hydrocarbon ratios in the troposphere. J. Geophys. Res., [Atmos.] 112, D10S34.
Placet, M., Mann, C.O., Gilbert, R.O., Niefer, M.J., 2000. Emissions of ozone precursors from stationary sources:: a critical review. Atmos. Environ. 34, 2183-2204.
Pollmann, J., Helmig, D., Hueber, J., Tanner, D., Tans, P.P., 2006. Evaluation of solid adsorbent materials for cryogen-free trapping—gas chromatographic analysis of atmospheric C2–C6 non-methane hydrocarbons. J. Chromatogr., A 1134, 1-15.
Rappenglück, B., Apel, E., Bauerfeind, M., Bottenheim, J., Brickell, P., Čavolka, P., Cech, J., Gatti, L., Hakola, H., Honzak, J., Junek, R., Martin, D., Noone, C., Plass-Dülmer, C., Travers, D., Wang, D., 2006. The first VOC intercomparison exercise within the Global Atmosphere Watch (GAW). Atmos. Environ. 40, 7508-7527.
Sanchez, J.M., Sacks, R.D., 2003. On-Line Multibed Sorption Trap and Injector for the GC Analysis of Organic Vapors in Large-Volume Air Samples. Analytical Chemistry 75, 978-985.
Sawyer, R.F., Harley, R.A., Cadle, S.H., Norbeck, J.M., Slott, R., Bravo, H.A., 2000. Mobile sources critical review: 1998 NARSTO assessment. Atmos. Environ. 34, 2161-2181.
Shepson, P.B., Kleindienst, T.E., McElhoe, H.B., 1987. A cryogenic trap/porous polymer sampling technique for the quantitative determination of ambient volatile organic compound concentrations. Atmospheric Environment (1967) 21, 579-587.
Slemr, J., 1991. Determination of volatile carbonyl compounds in clean air. Fresenius' Journal of Analytical Chemistry 340, 672-677.
Staehelin, J., Schläpfer, K., Bürgin, T., Steinemann, U., Schneider, S., Brunner, D., Bäumle, M., Meier, M., Zahner, C., Keiser, S., Stahel, W., Keller, C., 1995. Emission factors from road traffic from a tunnel study (Gubrist tunnel, Switzerland). Part I: concept and first results. Science of The Total Environment 169, 141-147.
Tanimoto, H., Mukai, H., Sawa, Y., Matsueda, H., Yonemura, S., Wang, T., Poon, S., Wong, A., Lee, G., Jung, J.Y., Kim, K.R., Lee, M.H., Lin, N.H., Wang, J.L., Ou-Yang, C.F., Wu, C.F., Akimoto, H., Pochanart, P., Tsuboi, K., Doi, H., Zellweger, C., Klausen, J., 2007. Direct assessment of international consistency of standards for ground-level ozone: strategy and implementation toward metrological traceability network in Asia. Journal of Environmental Monitoring 9, 1183-1193.
Tranchida, P.Q., Sciarrone, D., Dugo, P., Mondello, L., 2012. Heart-cutting multidimensional gas chromatography: A review of recent evolution, applications, and future prospects. Anal. Chim. Acta 716, 66-75.
Vairavamurthy, A., Roberts, J.M., Newman, L., 1992. Methods for determination of low molecular weight carbonyl compounds in the atmosphere: A review. Atmospheric Environment. Part A. General Topics 26, 1965-1993.
Van Grinsven, H.J.M., Holland, M., Jacobsen, B.H., Klimont, Z., Sutton, M.a., Jaap Willems, W., 2013. Costs and Benefits of Nitrogen for Europe and Implications for Mitigation. Environ. Sci. Technol 47, 3571-3579.
Volden, J., Thomassen, Y., Greibrokk, T., Thorud, S., Molander, P., 2005. Stability of workroom air volatile organic compounds on solid adsorbents for thermal desorption gas chromatography. Anal. Chim. Acta 530, 263-271.
Wang, C.-H., Chang, C.-C., Wang, J.-L., 2005. Peak tailoring concept in gas chromatographic analysis of volatile organic pollutants in the atmosphere. J. Chromatogr., A 1087, 150-157.
Wang, C.-H., Chiang, S.-W., Wang, J.-L., 2010. Simultaneous analysis of atmospheric halocarbons and non-methane hydrocarbons using two-dimensional gas chromatography. J. Chromatogr., A 1217, 353-358.
Wang, J.-L., Chang, C.-J., Chang, W.-D., Chew, C., Chen, S.-W., 1999a. Construction and evaluation of automated gas chromatography for the measurement of anthropogenic halocarbons in the atmosphere. J. Chromatogr., A 844, 259-269.
Wang, J.-L., Chen, S.-W., Chew, C., 1999b. Automated gas chromatography with cryogenic/sorbent trap for the measurement of volatile organic compounds in the atmosphere. J. Chromatogr., A 863, 183-193.
William Carter , W.P.L.C., 1994. Development Of Ozone Reactivity Scales For Volatile Organic Compounds (1994).
Yurdakul, S., Civan, M., Tuncel, G., 2013. Volatile organic compounds in suburban Ankara atmosphere, Turkey: Sources and variability. Atmospheric Research 120–121, 298-311.
Zaveri, R.A., Voss, P.B., Berkowitz, C.M., Fortner, E., Zheng, J., Zhang, R., Valente, R.J., Tanner, R.L., Holcomb, D., Hartley, T.P., Baran, L., 2010. Overnight atmospheric transport and chemical processing of photochemically aged Houston urban and petrochemical industrial plume. J. Geophys. Res., [Atmos.] 115, D23303.
Zhang, Y.H., Su, H., Zhong, L.J., Cheng, Y.F., Zeng, L.M., Wang, X.S., Xiang, Y.R., Wang, J.L., Gao, D.F., Shao, M., Fan, S.J., Liu, S.C., 2008. Regional ozone pollution and observation-based approach for analyzing ozone–precursor relationship during the PRIDE-PRD2004 campaign. Atmos. Environ. 42, 6203-6218.
行政院環保署99年空氣污染防製總檢討報告
行政院環保署光化測站監測網
行政院環保署空氣品質監測網
行政院環保署空氣品質監測方法(A705.11C 、A00210C)
王介亨, 以Heart-cut 技術配合單偵檢器發展氣相層析. “剪裁(tailoring)”技術 (2004)
歐雅雯, 以 VOCs 測站網探討中臺灣臭氧成因 (2005)
顏敬秦, 以滲透管法製備OVOC標準氣體並應用於線上檢量(2011)
陳彥呈, 以NCLA9K4活性碳作為VOCs濃縮介質與熱脫附方法之改良 (2011)
蘇源昌, 自動氣相層析質譜儀於揮發性有機物之分析技術與應用(2011)
99年度環保署/國科會空汙防制科研合作計畫-加強本土化汙染源發揮性有機空氣汙染物與異味物質排放資料建立研究
行政院環境保護署環境檢驗所-空氣汙染移動實驗室監測技術之研究開發
國內全國性排放清冊(Taiwan emission data system, TEDS7.1)
空氣汙染移動實驗室監測技術之研究開發(EPA-100-E3S2-02-01)