跳到主要內容

簡易檢索 / 詳目顯示

研究生: 鄭宗琳
Tsung-Lin Cheng
論文名稱: 非線性移動平均之漸近性質
Asymptotic properties of nonlinear moving averages
指導教授: 周元燊
Yuan-Shen Chou
口試委員:
學位類別: 博士
Doctor
系所名稱: 理學院 - 數學系
Department of Mathematics
論文出版年: 2000
畢業學年度: 88
語文別: 中文
論文頁數: 98
中文關鍵詞: 中央極限定理收斂速率漸近性質非因果移動平均非同時泛函短記憶過程長記憶過程非中央極限定理
外文關鍵詞: central limit theorem, rate of convergence, asymptotic properties, noncausal moving averages, noninstantaneous functional, short-memory process, long-memory process, non-central limit theorem
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文共分兩部分:
    第一部份. 線性過程之非同時泛函的收斂速率
    令$X_n=sum_{i=1}^{infty}a_ivarepsilon_{n-i}$, 其中 $(varepsilon_i)_{i=-infty}^{infty}$ 為 iid, $Evarepsilon_1=0, Evarepsilon_1^2<infty$, 且$a_i$滿足$|a_i|=O(i^{- eta}), eta>frac12$. 設 $K(x,y)$為Borel 可測函數. 這部分主要證明當$Q_N/sqrt{N}$滿足中央極限定理而其極限變異數為正數時, 它的Berry-Esseen 收斂速率. ($Q_N=sum_{n=1}^N [K(X_{n+t_1},X_{n+t_2})-EK(X_{n+t_1},X_{n+t_2})], t_1 藉由對$X_n$的線性結構的掌握, 除了動差(moment)的假設外, 對於$X_n$的分布函數並沒有其他假設, 我們期待$X_n$的非線性泛函能有一種正交展開式. 藉由對$K(X_{n+t_1},X_{n+t_2})$的展開式, 以及$ell$-逼近法, 我們可以使用Stein 的分區法(blocking), 將 $Q_N/sqrt{N}$的Berry-Esseen收斂速率求出來.
    我們列出兩個重要的例子作為應用, 其中之一為Gaussian長記憶過程的過零數(zero-crossing)的漸進性質, 另外一個是關於Non-Gaussian短記憶過程隨機二元展開式句型頻率的極限問題.
    第二部分. 非因果性移動平均的非線性轉換的極限定理
    這部分主要在研究以下兩種非線性移動平均的漸進性質:
    (i). $K(X^-_n,X^+_n)$, (ii). H(X_n),
    其中$X^-_n=sum_{j=1}^{infty}a_jvarepsilon_{n-j}, X^+_n=sum_{j=1}^{infty}b_jvarepsilon_{n+j-1}$, 且 $X_n=X^-_n+X^+_n$, 而 $(a_j)_{jge 1}, (b_j)_{jge 1}$ 為滿足$sum_{j=1}^{infty}(a^2_j+b^2_j)<infty, a_0=0,b_0=0$ 的兩實數列. $K:Re^2 o Re$ 及 $H:Re oRe$為 Borel 可測函數, 滿足 $E[K(X^-_n,X^+_n)]^2<infty,EH^2(X_n)<infty$. $(varepsilon_i)_{i=-infty}^{infty}$, 為 iid, $Evarepsilon_1=0,Evarepsilon^2_1<infty$.
    不論是(i)或(ii), 所考慮的都是非因果性的移動平均, 也就是說它們的可測性包含過去和未來.
    Giraitis and Surgailis 1999 的文章中, 證明了關於非因果性長記憶過程 $X_n$(non-causal)之經驗過程(empirical process)得一個非$sqrt{N}$的極限定理. 他們假設$varepsilon_1$的特徵函數滿足一些光滑的條件, 並且也需要相當高階的動差條件.
    經由改良 Ho and Hsing 1997的望遠鏡法, 我們不僅降低 Giraitis and Surgailis 1999的動差條件, 我們也得到較高街的展開式和極限定理. 我們稱這個改良的方法為 ''雙重$ell$-近似法.''


    The thesis is divided into two parts.
    Part I. Let $X_n=sum_{j=1}^{infty}a_jvarepsilon_{n-j}$, where $(varepsilon_i)_{i=-infty}^{infty}$ are iid with mean 0 and finite second moment and the $a_i$ are assumed $|a_i|=O(i^{- eta})$ with $ eta>frac12$. For a large class of Borel measurable functions $K(x,y)$, the Berry-Esseen type rate of convergence for $Q_N/sqrt{N}$, $Q_N=sum_{n=1}^N[K(X_{n+t_1},X_{n+t_2})-EK(X_{n+t_1},X_{n+t_2})], t_1 By fully exploring the linear structure of $X_n$, a new type of finite distribution-free orthogonal expansion is develope so that $Q_N$ can very well approximated by some random quantities which have nice structures and can be handled with less difficulty. At th end, we give two related examples as applications. One is concerning the zero crossing numbers for a Gaussian long-memory linear process and the other is about the frequency of a given pattern appearing in a random
    binary expansion.
    Part II. Consider the random vector $(X^-_n,X^+_n)$, where $X^-_n=sum_{j=1}^{infty}a_jvarepsilon_{n-j}$ and
    $X^+_n=sum_{j=1}^{n+j-1}$, where $(a_j)_{jge 1},(b_j)_{jge 1}$ are two sequences of real number satisfying $sum_{j=1}^{infty}(a^2_j+b^2_j)<infty$, $a_0=b_0=0$. $(varepsilon_i)_{i=-infty}^{infty}$ are iid with mean 0 and finite second moment . We study the limit properties of the partial sums $sumlimits_{n=1}^N K(X^-_n,X^+_n)$ of non-causal nonlinear moving averages $K(X^-_n,X^+_n)$. The original techniques used by Ho and Hsing (1997) are not directly applicable. The difficulties stems from the non-causality which destroys the orthogonality of their decompostions. A double $ell$-approxiamtion device propose to remedy the problem.

    Cover 論文提要 Contents Abstract Part I. The rate of convergence for noninstantaneous functional of linear rocesses 1 Preliminaries 2 Main results 3 Proof 4 Technical lemmas 5 Zero-crossing countings Part II. The limit theorems for nonlinear functional of noncausal moving averages 1 Introduction 2 Notation and Preliminaries 3 Main Results 4 Proofs of main results 5 Technical Lemmas References

    Avram, F., Taqqu,M.S. (1987). Generalized powers of stongly dependent random
    variables. Ann. Probab. 15, 767-775.
    Beran, J.(1991). M-estimator of location for data with slowly decaying correlations.
    J. Amer. Statist. Assoc.86, 704-708.
    Beran, J. (1992). Statistical methods for data with long-range dependence. Statist.
    Sci. 7, 404-420.
    Bernstein, S. N. (1927). Sur l'extension du theoreme limite du calcul des probabilites
    aux sommes de quantites dependantes. Math. Ann. 97, 1-59.
    Brockwell, P. J. and Davis, R. A. (1987). Time Series: Theory and methods.
    Springer-Verlag, New York, Berlin, Heidelberg.
    95
    Bradley, R. C. (1986). Basic properties of strong mixing conditions. In Dependence
    in Probability and Statistics ( E. Eberlein and M. S. Taqqu, eds.) 162-192.
    Birkhauser, Boston.
    Chow, Y. S. and Teicher, H. (1978). Probability Theory { Independence, Interchangeability,
    Martingales. Springer-Verlag, New York.
    Cox, D.R.(1984). Long-range dependence: a review.In Statistics: An Appraisal.
    Proceedings of the 50th Anniversary Conference (H.A.David and H.T. David,
    eds. )55-74. Iowa state Univ. Press.
    Chung, K. L. (1974). A course in Probability Theory. Academic Press, New York.
    Davies, S. and Hall, P. (1999). Fractal analysis of surface roughness by using spatial
    data. J.R.Statist. Soc. B, 61, Part 1, 3-37.
    Davydov, Y.A.(1970). The invariance principle for stationary processes. Theory
    Probab. App.15, 487-498.
    Dehling, H. and Taqqu, M.S.(1989). The empirical process of some long-range dependent
    sequences with an application to U-statistics. Ann. Statist.17,1767-1783.
    Dobrushin, R.L.and Major, P.(1979) Non-central limit theorems for non-linear functions
    of Gaussian elds. Z.Wahr.Verw.Gebiete.50, 27-52.
    Giraitis, L.(1985). Central limit theorem for functionals of a linear process. Lithuanian
    math. J.25, 25-35.
    Giraitis, L. Koul, H.L., and Surgailis, D.(1996) Asymptotic normality of regression
    estimators with long memory errors. Statist. Probab. Lett. 29, 317-335.
    Giraitis, L. and Surgailis, D.(1986) Multivariate Appell polynomials and the central
    limit theorem. In:Eberlin,E. Taqqu, M.S. (Eds) Dependence in Probability and
    Statistics, Birkhauser, Boston. pp 21-71.
    Giraitis, L. and Surgailis, D.(1994) A central limit theorem for the empirical process
    of a long memory linear sequence. Preprint: Beitrage fur statistik, Universitat
    Heidelberg 24 http://statlab.uni-heidelberg.de/reports/www.html.
    Giraitis, L. and Surgailis, D.(1999) Central limit theorem for the empirical process
    of a linear sequence with long memory. J. Statist. Plan. Infer. 80, 81-93.
    Gotze, F. and Hipp, C. (1983). Asymptotic expansion for sums of weakly dependent
    random vectors. Z. Wahrsch. Verw. Gebiete 50, 211-239.
    Heyde, C.C.(1995). On the robustness of limit theorems. Bulletin of the ISI 50th
    session in Beijing, Book 2, 549-555.
    96
    Ho, H.-C. and Hsing, T. (1996). On the asymptotic expansion of the empirical
    process of long-memory moving averages. Ann. Statist. 24, 992-1024.
    Ho, H.-C. and Hsing, T. (1997). Limit theorems for functional of moving averages.
    Ann. Probab. V.25, N.4, 1636-1669.
    Ho, H.-C. and Sun, T.-C. (1987). A central limit Theorem for non-instantaneous
    lters of a stationary Gaussian process. Journal of Multivariate Analysis. V.22,
    No.1, 144-155.
    Koul, H.L., and Surgailis, D.(1997) Asymptotic expansion of M-estimators with long
    memory errors. Ann. Statist.25, 818-850.
    Kunsch, H.(1986). Statistical aspects of self-similar processes. In Proceedings of the
    First World Congress of the Bernoulli Society, Tashkent1, 67-74.
    Lii, K.S., and Rosenblatt, M.(1996) Maximum likelihood estimation for non-Gaussian
    non-minimum phase arma sequences. Statistica Sinica 6 ,1-22.
    Pham, T. D. and Tran, T. T. (1985). Some mixing properties of time series models.
    Stochastic Process. Appl. 19 297-303.
    Robinson, P.M. (1994). Time series with strong dependence. In Advances in Econometrics:
    Sixth World Congress 47-96. Cambridge Univ. Press.
    Rosenblatt, M. (1984)Stochastic processes with short-range and long-range dependence.
    In Statistics: An Appraisal. Proceedings of the 50th Anniversary Conference
    (H.A.David and H.T. David, eds. )55-74. Iowa state Univ. Press.
    Rosenblatt, M. (1961). Independence and dependence. Proc. Fourth Berkeley Symp.
    Math. Statis. Probab. 431-443. Univ. California Press.
    Slud, E. (1991). Multiple Wiener-It^o integral expansions for level-crossing-count
    functionals. Probab. Th. Rel. Fields 87. 349-364.
    Stein, C. (1972). A bound for the error in the normal approximation to the distribution
    of a sum of dependent random variables. Proc. Sixth Berkeley Symp.
    Math. Statis. Probab. 431-443. Univ. California Press.
    Sun, T.C. and Ho, H.C.(1985). Limit theorems of non-linear functions for stationary
    Gaussian Processes, In Dependence in Probability and Statistics(E.Eberlein and
    M.S.Taqqu,eds.)137-165. Birkhauser, Boston.
    Surgailis, D.(1982) Domains of attraction of self-similar multiple integrals. Lithuanian
    Math. J.22, 195-201.
    Taniguchi, M. (1986). Berry-Esseen theorems for quadratic forms of Gaussian stationary
    processes. Probab. Th. Rel. Fields 72, 185-194.
    Taqqu, M.S.(1975) Weak convergence to fractional Brownian motion and to the
    Rosenblatt process. Z. Wahr. Verw. Geb. 31, 287-302
    Taqqu, M.S. (1979) Convergence of integrated processes of arbitrary Hermite rank.
    Z. Wahr. Verw. Geb. 50, 53-83.
    Taqqu, M.S. (1985). A bibliographic guide to self-similar processes and long-range
    dependence.In Dependence in Probability and Statistics(E.Eberlein and M.S.Taqqu,eds.)137-
    165. Birkhauser, Boston.
    Tikhomirov, A. N. (1980). On the convergence rate in the central limit theorem for
    weakly dependent random variables. Theory Probability Appl. 25, 790-809.

    QR CODE
    :::