跳到主要內容

簡易檢索 / 詳目顯示

研究生: 鄧智修
Teng-chih-siou
論文名稱: 環形二維光子晶體共振腔之研究
指導教授: 欒丕綱
Laun pi-gang
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
論文出版年: 2016
畢業學年度: 105
語文別: 中文
論文頁數: 53
中文關鍵詞: 光子晶體共振腔品質因子環形
外文關鍵詞: photonic crysatal
相關次數: 點閱:15下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 光子晶體是週期性排列的週期結構,應用的範圍非常廣泛,共振腔即是一個實際的應用,包括一維二維都有許多的應用。本論文中討論的就是將二維光子晶體共振腔變為環型,再去調變填充率以及層數,根據環形光子晶體共振腔的間隔角度去調變光子晶體能帶結構圖,再利用等比例放大的方法增加層數,以得到高品質因子為目的。
      本論文利用COMSOL模擬軟體5.1版本,並利用電磁波模組以及阻抗邊界去求得特徵值,在特徵值中會取得許多模態圖,選用其中最清晰且最大的品質因子模態圖。本文對TM mode、TE mode分別做分析與判斷,我們發現TM及TE都會有到百萬的品質因子,但也有的填充率只有幾萬的品質因子,可以確定的是在某些層數及填充率的吸收效能是良好的。


    Photonic Crystals are periodic dielectric or metal-dielectric structures. These applications are very extensive. Resonant cavity is a very practical application including one-dimensional and two-dimensional. In this paper, we discuss that two - dimensional photonic crystal resonator becomes a ring photonic crystal resonator.
    According the band structure of photonic crystal to adjust the angle in each ring between the dielectric cylinder. Changing filling fraction and layers will help us to get high quality factor.
    We use Electromagnetic wave module in Comsol simulation software to get eigenvalue. In finding eigenvalues, we choose the most clearly and the biggest Q factor to use. We analysis TE mode and TM mode separately. After comparing two mode, we found that both two modes’s Q factor are up to millions.But some of Q factors are just low to million. It can be known that there have some conditions to get high Q.

    中文摘要i 英文摘要 ii 致謝. iii 目錄iv 圖目次vi 表目次. viii 第一章 緒論 .1 1.1 光子晶體簡介 .1 1.2 光子晶體特性 .2 1.3 光子晶體應用 .3 2.1 二維光子晶體之平面波展開法 .4 2.2 品質因子 .8 2.3 光子晶體共振腔 .10 2.4 環形共振腔 .11 第三章 設計說明與研究架構 13 3.1 環形光子晶體共振腔 .13 3.2 COMSOL 模擬設定17 第四章 模擬分析與結果 19 4.1 TM 波之品質因子比較19 4.2 TE 波之品質因子比較.30 4.3 模擬結果與討論39 第五章 結論與未來展望 43 參考文獻.44

    參考資料
    [1]S. John, “Strong localization of photons in certain disordered dielectric superlattices”, Phys. Rev. Lett 58, 2486 (1987).

    [2]E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics”, Phys. Rev. Lett.58, 2059 (1987).

    [3]E. R. Brown, C. D. Parker, and E. Yablonovitch, J.Opt.Soc.Am B10, 404 (1993).

    [4] J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, “Photonic band gap-guidance in opticalfibers”, Sicience 282, 1476 (1998).

    [5] T. F. Krauss, R. M. de La Rue, and S. Brand, Nature 283, 699 (1996).

    [6]Chun Jiang, Lin Luo, “Spherical Photonic Crystal Microcavity with Ultrahigh Quality Factor”, IEEE 1, 1-3 (2010).

    [7] P. W. Evans, J. J. Wierer, and N. Holonyak, Appl. Phys. Lett 70, 1119 (1997).

    [8] P. Rigby and T. F. Krauss, Nature 390, 125 (1997).

    [9]T. F. Krauss, O. Painter, A. Scherer, J. S. Roberts, and R. M. de La Rue, Opt. Eng 37,1143 (1998).

    [10]Ohtera, Y., T. Sato, T. Kawasjima and T. Tamamura, “Photonic Crystal Polarization Splitters”, Electron. Lett 35, 1271 (1999).
    [11] S. Gupta, G. Tuttle, M. Sigalas, and K. M. Ho, Appl. Phys. Lett 71, 2412 (1997).

    [12]欒丕綱、陳啟昌,光子晶體,二版,五南圖書出版股份有限公司,台北市,西元2010年10月。

    [13]林清凉、戴念祖,啟發性物理學─力學,三版,五南圖書出版股份有限公司,
    台北市,西元2010年10月。

    [14]Jerry B. Marion, “Classical Dynamics Of Particles And Systems, Fifth Edition”, University of Maryland Press (2003).

    [15]Richard Phillips Feynman,費曼物理學講義Ⅰ力學、輻射與熱(3)─旋轉與震盪, 師明睿, 一版, 天下遠見出版股份有限公司,台北市,西元2008年10月。

    [16]Stefan Prorok, “Nanophotonics and integrated optics Photonic Crystal Cavities”, CST of America, White Paper, (2013)

    [17]Jacob Scheuer and Amnon Yariv, “Annular Bragg Defect mode Resonators”, JOSA B, Vol. 20, Issue 11, pp. 2285-2291 (2003)

    [18] Min Qiu and Ziyang Zhang, “High-Q Microcavities in 2D Photonic Crystal Slabs Studied by FDTD Techniques and Pade Approximation”, Proc. of SPIE Vol. 5733, pp. 366-376 (2005).

    [19]陳虹伶, “高品質環形光子晶體共振腔之研究”,中央大學碩士論文 (2011)

    [20]Yoshihiro Akahane, et al., “High-Q photonic nanocavity in a two dimensional photonic crystal”, Nature 425, 944 (2003).

    [21]B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity”, Nature Materials 4, 207-210 (2005).

    [22]O. Painter, et al., “Two-dimensional photonic band-gap defect mode laser”, Science 284, 1819-1821 (1999).

    QR CODE
    :::