| 研究生: |
賴健銘 Jian-Ming Lai |
|---|---|
| 論文名稱: |
基於物聯網應用之 ACO-OFDM 可見光通訊收發機實現 Realization of ACO-OFDM Visible Light Communication Transceiver Based on Internet of Things Applications |
| 指導教授: |
張大中
Dah-Chung Chang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 通訊工程學系在職專班 Executive Master of Communication Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 英文 |
| 論文頁數: | 69 |
| 中文關鍵詞: | 光通訊不對稱剪裁正交多頻分工調變 、物聯網 |
| 外文關鍵詞: | ACO-OFDM, IoT |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著無線通訊逐漸普及,生活上手機通訊及物聯網應用都離不開通訊,除了電磁波為通訊介質傳遞外,使用光強度調變來完成通訊功能稱之為可見光通訊,許多文獻已經探討可見光通訊使用光通訊不對稱剪裁正交多頻分工調變(ACO-OFDM)的理論推導及使用情境並做模擬實驗證明其可行性,本文基於已知調變技術下從無到有設計可見光通訊發射與接收硬體電路,發射端使用可程式化數位類比轉換器,使輸入訊號為任意值,搭配驅動電路做光訊號調變,接收端使用市售手機後攝裝置頻閃偵測器,期望最終應用能與手機現有感測器結合,使手機應用無須額外增加硬體電路,評估市售感測器,確認最快取樣率來決定系統應用頻寬,並做實驗確認與發射端結合後通道響應是否理想。使用Matlab做為開發平台並整合收發機控制,參考802.11a建立通訊格式,一樣使用前導符作為封包邊界偵測,提出方法對取樣頻率偏移及通道響應產生的干擾作補償,最終驗證資料經過可見光通訊電路後,接收端能正常還原原始資料。
With the increasing popularity of wireless communication, mobile phone communication and Internet of Things applications are inseparable from communication in daily life. In addition to the transmission of electromagnetic waves as the communication medium, the use of light intensity modulation to complete the communication function is called visible light communication (VLC). Many literatures have discussed visible light communication. Using the theoretical derivation and application scenarios of Asymmetrically Clipped Optical Orthogonal Multi-Frequency Division Modulation (ACO-OFDM) in optical communication, and doing simulation experiments to prove its feasibility, this paper designs visible light communication platform from scratch based on known modulation technology. In the receiving hardware circuit, the transmitter uses a programmable digital-to-analog converter to make the input signal any value, and the driver circuit is used to modulate the optical signal. The receiving side uses a commercially available mobile phone rear camera device flicker detector. It can be combined with the existing sensor of the mobile phone without adding additional hardware circuits, evaluate the commercially available sensors, confirm the fastest sampling rate to determine the system application bandwidth, and conduct experiments to confirm whether the channel response is ideal after light transmitting with the LED. Use Matlab as the development platform and integrate the transceiver control method by USB HID protocol, establish the communication system specification with reference to 802.11a, also use the preamble as packet boundary detection, and propose a method to compensate for the interference caused by sampling frequency offset and channel response, after the final verification data passes through the visible light communication circuit, the receiving end can restore the original data.
[1] R. D. Dupuis and M. R. Krames, “History, Development, and Applications of High-Brightness Visible Light-Emitting Diodes” in Journal of Lightwave Technology, vol. 26, no. 9, pp. 1154-1171, May1, 2008,
[2] Sri Ariyanti and Muhammad Suryanegara, “Visible Light Communication (VLC) for 6G Technology: The Potency and Research Challenges”, 2020 Fourth World Conference on Smart Trends in Systems, Security and Sustainability (WorldS4), London, UK, July 2020
[3] Jean Armstrong, “OFDM for Optical Communications”, IEEE Journal of Lightwave Technology, vol. 27, no. 3, February 2009.
[4] Fang Yang and Junnan Gao, “Novel Visible Light Communication Approach Based on Hybrid OOK and ACO-OFDM” IEEE Photonics Technology Lett. , vol. 28, no. 14, pp. 1585–1588, April 2016.
[5] J. Dang and Z. Zhang, “Frequency-Domain Diversity Combining Receiver for ACO-OFDM System” IEEE Photonics Technology Lett. , vol. 7, no. 7, December 2015.
[6] Tung-Yeh Hsieh, “Equalizer Design and Implementation for ACO OFDM VLC System with Real-valued Hartley Transform”國立中央大學, 電機工程學系碩士論文, June 2015.
[7] H. Chen et al., “Performance comparison of visible light communication systems based on ACO-OFDM, DCO-OFDM and ADO-OFDM” 2017 16th International Conference on Optical Communications and Networks (ICOCN), Wuzhen, China, 2017
[8] M. P. S. Bhadoria, G. Pandey and A. Dixit, “Performance Evaluation of Visible Light Communication for DCO and ACO Optical OFDM Techniques” 2019 National Conference on Communications (NCC), Bangalore, India, 2019
[9] Q. Hu, X. Jin and Z. Xu, “Compensation of Sampling Frequency Offset With Digital Interpolation for OFDM-Based Visible Light Communication Systems” in Journal of Lightwave Technology, vol. 36, no. 23, pp. 5488-5497, 1 Dec.1, 2018
[10] L. Zhang, W. Zhang and J. Sun, “VLC system implementation with white LEDs” 2017 IEEE/CIC International Conference on Communications in China (ICCC), Qingdao, China, 2017
[11] J. Armstrong and B. J. C. Schmidt, “Comparison of asymmetrically clipped optical OFDM and DC-biased optical OFDM in AWGN” IEEE Comm. Lett. , vol. 12, no. 5, pp. 343–345, May 2008.
[12] AMS OSRAM GROUP, “TSL2585 light sensor with UVA detection”, December 2022.
[13] Wei-Ting Lin, “An OFDM-based Transceiver for Visible Light Communications” National Tsing Hua University, Department of Electrical Engineering, November 2018.
[14] Yachang Hou, “Comparasion and Analysis of SFO Estimation Methods Based on OFDM” International Conference on Computer and Communication System (ICCCS), June 2020.
[15] Joerg Schmalenstroeer and Reinhold Haeb-Umbach, “Efficient Sampling Rate Offset Compensation – an Overlap-Save Based Approach” 2018 26th European Signal Processing Conference, December 2018
[16] Desheng Ma and Xueyang Geng, “A 6th order Butterworth SC low pass filter for cryogenic applications from −180°c to 120°c” 2009 IEEE Aerospace conference, April 2009
[17] “An overview on optimized NLMS algorithms for acoustic echo cancellation” EURASIP Journal on Advances in Signal Processing 2015.
[18] 洪仁傑,“Carrier Frequency Offset Estimation and Compensation of OFDMA Uplink System” 國立交通大學, 電信工程學系碩士論文, August 2017.
[19] 何宗哲, “Design of an OFDM Baseband Processor and Synchronization Circuits for IEEE802.11a Wireless LAN Standard” 國立中山大學, 資訊工程學系碩士論文, July 2014.
[20] T. G. Kang, “The Convergence Technology of LED Illumination and Visible Light Communications” Electronics and Telecommunications Trends, vol. 23, no. 5, pp. 32-39, Oct. 2008.
[21] M. Qiang, Z. Honglin and Z. Qihua, “Design of A Wireless Conference System Based on LED Visible Light Communication” 2020 3rd IEEE International Conference on Knowledge Innovation and Invention (ICKII), Kaohsiung, Taiwan, 2020
[22] T. Adiono, A. Pradana, R. V. W. Putra and S. Fuada, “Analog filters design in VLC analog front-end receiver for reducing indoor ambient light noise” 2016 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS), Jeju, Korea (South), 2016
[23] F. -L. Chang, W. -W. Hu, D. -H. Lee and C. -T. Yu, “Design and implementation of anti low-frequency noise in visible light communications” 2017 International Conference on Applied System Innovation (ICASI), Sapporo, Japan, 2017
[24] D. N. Anwar, A. Srivastava and V. A. Bohara, “Adaptive Channel Estimation in VLC for Dynamic Indoor Environment” 2019 21st International Conference on Transparent Optical Networks (ICTON), Angers, France, 2019
[25] M. M. A. Mohammed, C. He and J. Armstrong, “Performance Analysis of ACO-OFDM and DCO-OFDM Using Bit and Power Loading in Frequency Selective Optical Wireless Channels” 2017 IEEE 85th Vehicular Technology Conference (VTC Spring), Sydney, NSW, Australia, 2017