跳到主要內容

簡易檢索 / 詳目顯示

研究生: 王派文
Pai-Wen Wang
論文名稱: 除氣與除渣處理對於鋁合金品質的影響
Effect of fluxing and degassing treatment for aluminum alloys
指導教授: 施登士
Teng-Shih Shih
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
畢業學年度: 89
語文別: 中文
論文頁數: 168
中文關鍵詞: 夾雜物顆粒除渣製程處理碳酸物氯化物氟化物氧化膜乾渣濕渣
外文關鍵詞: carbonates, chlorides, fluorides, fluxing treatment
相關次數: 點閱:8下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • 最後實驗結果顯示:
    *除渣製程的處理,對於鋁合金冷激片中霧化區(氧化膜或孔洞)形態的影響,依序為:氟化物 > 氯化物 > 碳酸物。
    *由影像分析統計資料,顯示經除渣製程處理後,在相同組成的鋁湯內,其對夾雜物顆粒(孔洞)數量的影響,數量由高至低依序為:碳酸物(156 counts/mm2)> 氯化物(145 counts/mm2)> 氟化物(132 counts/mm2)。
    *觀察發現氟化物反應所產生的浮渣較為碎裂,浮渣的型式屬於乾渣。氯化物反應所產生的浮渣多為塊狀和片狀,浮渣的型式屬於濕渣。使用碳酸物與鋁湯反應方面,浮渣都呈現團塊狀的情形。
    *經由X-ray粉末繞射分析後,顯示出A356.2合金分別使用KF和KCl反應後的浮渣,分別含有K3AlF6和KAlSiO4化合物;在Al-7Cu方面,使用K2CO3反應後,所產生的浮渣含有Cu2MgO3和K6MgO4化合物;在Al-7Si方面,分別使用KF和NaF反應後,所產生的浮渣分別為K3AlF6和Na2SiF6化合物。
    *散佈在試棒中的氧化膜和夾渣物,會降低試棒的機械性質。



    The quality of aluminum castings was evaluated by the oxide particles and oxide films on polished surface of aluminum chill samples (after ultrasonic vibration treatment). The inclusion particles and oxide films (termed as foggy area of polished surface from aluminum chill samples) were statistically assessed by pc-meter image process system. Alloying elements on the quality of aluminum castings were commonly different while it was strongly dominated by the fluxing chemicals.
    Experimental results showed that the morphologies of foggy areas (or porosity) on the aluminum chill samples were mainly controlled by the orders of fluorides, chlorides and carbonates. The average of inclusion particles was 156, 145 and 132 (counts/mm2) through the image process system after fluxing with fluorides, chlorides and carbonates in each melts, respectively.
    The skimmed slag was also observed and detected after fluxing treatment. The dry-type dross was found in fluxing melts with fluorides when the others were wet-type fluxed by the chlorides and carbonates. Many spontaneously reactive and complex compounds were detected by the X-ray powder diffraction spectroscopy.
    Eventually, the optimal fluxing process was achieved through the mechanical properties testing of fluxed specimens.
    Keyword: fluorides, chlorides, carbonates, fluxing treatment, inclusion particles, oxide films, dry-type slag, wet-type slag

    總 目 錄 謝誌………………………………………………………………………….Ⅰ 中文摘要…………………………………………………………………….Ⅱ 英文摘要…………………………………………………………………….Ⅲ 總目錄……………………………………………………………………...Ⅳ 表目錄……………………………………………………………………….Ⅷ 圖目錄……………………………………………………………………...Ⅸ 第一章前言……………………………………………………………….1 第二章文獻回顧………………………………………………………….2 2-1鋁合金的介紹…………………………………………………………….2 2-1.1 純鋁(1XX.X)…………………………………………….…..3 2-1.2 A356 (鋁─矽─鎂) 鋁合金材料介紹…………………………...3 2-1.3 鋁─銅合金材料介紹……………………………………………….4 2-1.4 鋁矽合金(4XX.X)…………………………………………….4 2-2合金元素對鋁合金的影響……………………………………….…… .5 2-2.1 矽元素的影響…………………………………………….………5 2-2.2 銅元素的影響……………………………..…………………...5 2-2.3 鎂元素的影響……………………………………………….……6 2-2.4 磷元素的影響…………………………………………….………6 2-2.5 鈉元素的影響………………………………………………….…6 2-2.6 鍶元素的影響……………………………………………….……7 2-2.7 鐵元素的影響………………………………………………….…8 2-2.8 影響熔湯表面張力的元素……………………………………….8 2-2.9 影響熔湯中氫含量的元素……………………………….………8 2-3 影響鋁-矽-鎂合金機械性質的機構及製程……………………….8 2-3.1 共晶矽成長機構……………………………………………….…8 2-3.2 調質作用及機構……………………………………………….…9 2-3.3 氣孔的形成………………………………………………………10 2-4 鋁合金融解後夾雜介在物的來源…………………………………11 2-4.1 氧化物………………………………………………………..12 2-4.2 鋁碳化物………………………………………………………12 2-4.3 鹵化物鹽類…………………………………………………..12 2-5 助熔劑在融解鋁合金過程中的使用特性…………………………13 2-5.1 助熔劑的成份………………………………………………..13 2-5.2 一般所使用的助熔劑具有的特質…………………………..14 2-5.3 助熔劑的使用分類…………………………………………..14 2-5.4 助熔劑的添加方法…………………………………………..17 2-5.5 使用助熔劑所引發的相關問題………………………………18 2-5.6 使用助熔劑後對鋁湯內的雜質所產生的作用………………18 2-5.7 鋁滴在熔融鹽中的界面行為和結合性………………………20 2-6 除氣(氫氣)作業…………………………………………………22 2-6.1 氫的來源………………………………………………………22 2-6.2 鋁液中的除氣(除氫)用氣體………………………………22 2-6.3 除氣的效率……………………………………………………23 第三章 實驗方法與步驟………………………………………………….24 3-1 實驗材料……………………………………………………………24 3-2 試棒尺寸與模具規範………………………………………………24 3-3 實驗主要設備………………………………………………………24 3-4 實驗步驟……………………………………………………………25 3-5 氧化膜分析…………………………………………………………27 3-6 顆粒分析……………………………………………………………27 3-7 渣之分析……………………………………………………………28 第四章 結果與討論……………………………………………………….29 4-1 氧化膜和氧化物顆粒(孔洞)的分析--冷激片…………………29 4-1.1 合金元素對氧化膜和氧化物顆粒(孔洞)的影響…………29 4-1.1.1 合金元素對於未除氣鋁湯氧化膜和氧化物顆粒(孔洞) 的影響………………………......................29 4-1.1.2 A356.2﹙高鍶﹚加屑對於未除氣鋁湯氧化膜和氧化物顆 粒(孔洞)的影響………………………………………31 4-1.1.3 除氣對不同合金鋁湯氧化膜和氧化物顆粒(孔洞)的影 響……........................................32 4-1.1.4 除氣前後對不同合金鋁湯氧化膜和氧化物顆粒(孔洞) 的影響........................................33 4-1.2 fluxing處理對氧化膜和氧化物顆粒(孔洞)的影響…….34 4-1.2.1 二元合金元素對於經過fluxing處理的鋁合金影響….34 4-1.2.2 不同含量的鋁屑對於經過fluxing處理後的A356.2(Al- 7Si-0.3Mg)合金的影響…………………...........37 4-1.2.3 鎂對Al-7Si合金經過fluxing處理的影響…………….39 4-1.2.4 鍶對A356.2合金經過fluxing處理後的影響………….40 4-2 氧化膜的分析─主要氧化膜(primary oxide film)…………41 4-2.1 合金元素對於主要氧化膜的影響……………………………41 4-2.2 fluxing的處理對於一次氧化膜的影響…………………….42 4-3 顆粒(孔洞)分析…………………………………………………42 4-4 渣的分析……………………………………………………………43 4-4.1 渣的表面形態和顏色分析……………………………………43 4-4.2 渣的秤重分析…………………………………………………44 4-4.3 X-ray粉末繞射分析………………………………………….45 4-5 拉伸機械性質的影響………………………………………………45 4-5.1 冷激片上霧化區(氧化膜)面積率多寡對試棒機械性質的影 響…..............................................45 4-5.2 冷激片上氧化物顆粒(孔洞)數量多寡對試棒機械性質的影 響…..............................................46 第五章結論……………………………………………………………..47 參考文獻……………………………………………………………….…..48 表 目 錄 Table. 2-1 形成金屬氧化物之自由能(Kcal/Oxygen at 227℃)【32】……………...................................................51 Table. 2-2 鑄鋁合金中爐渣的種類【32】………………………………52 Table. 2-3 Characteristics of Materials Used in Fluxes【26】.53 Table. 2-4 Properties of Selected Compounds【26】………………54 Table. 3-1 The Characteristics of Fluxes used in this work【25】…………………...............................................55 Table. 3-2 各爐次成份一覽表……………………………………………56 Table. 3-3 實驗步驟流程圖………………………………………………57 Table. 3-4 各爐次實驗參數的設定………………………………………58 Table. 3-5 各爐次減壓試片密度…………………………………………59 Table. 3-6 各爐次相對孔洞率(%)……………………………………….60 Table. 4-1 Amount of foggy area (Oxide film or void) measured in different Aluminum alloy castings……........................61 Table. 4-2 Amount of particle (void) measured in different Aluminum alloy astings………………………………………………….62 Table. 4-3 經由fluxes反應後觀察到不同合金的霧化區面積率及其形態……….....................................................63 Table. 4-4 試棒的拉伸機械性質…………………………………………64 圖 目 錄 Fig. 2-1 Equilibrium binary Al-Si phase diagram【4】………….66 Fig. 2-2 Classification of degree of modification ,etching 0.5%HF【21】………….............................................67 Fig. 2-3 Equilibrium binary Al-Cu phase diagram【4】………….68 Fig. 2-4 The effect of Si content on the fluidity of binary Al-Si alloys measured at aconstant pouring temperature【13】….69 Fig. 2-5 Effect of Cu content on the mechanical properties of Al-Cu alloy【14】…..........................................69 Fig. 2-6 Effect of Cu content on the mechanical properties of A356 alloy【15】…...........................................70 Fig. 2-7 Fluidity of spiral test developed by pouring binary Al-Cu alloys as a function of Cu content;data measured with a constant pouringtemperature of 800℃【13】……………………….70 Fig. 2-8 Effect of Mg content on the mechanical properties of A356 alloys【16】…..........................................71 Fig. 2-9 The effect of Mg ,Fe and Si content on the mechanical properties of Aluminum alloy【16】………………………………….71 Fig. 2-10 The effect of Mg ,Fe and Si content on the Impact Energy of Aluminum alloy【16】……………………………………….72 Fig. 2-11 Fluidity of binary Al-Mg alloys as a function of Mg content;data measured with a constant pouring temperature【13】……………...................................................72 Fig. 2-12 Optical micrograph of Mg2Si【5】……………………….73 Fig. 2-13 Effect of P on the microstructure of Al-7%Si alloy(solidification rate 2 ℃/min)【17】…….……………………....73 Fig. 2-14 Optical micrograph of SrAl2Si2【4】……………………74 Fig. 2-15 The relation of hydrogen content and amount of porosity on unmodified , Sr-modified , and Na-modified Al-7%Si alloy【18】……………………..................................74 Fig. 2-16 The microstructure of the acicular Al-Si-Fe compound and the square Al-Si-Fe-Mg compound【6】………………………….75 Fig. 2-17 Schematic illustration of the growth of an Acicular silicon crystal from the melt【4】 ………………………………..75 Fig. 2-18 Twinning in a crystal; Note the continuity of the atom planesacross the twin plane【20】…………………………….76 Fig. 2-19 Location of twin planesand re-entrant edge in a silicon crystal【4】…….....................................76 Fig. 2-20 Silicon Crystals in an unmodified sample of alloy 356; SEM picture after deep etching: (a) 100x (b)1000x【4】.77 Fig. 2-21 Silicon Crystals in an modified sample of alloy 356; SEM picture after deep etching (a) 100x(b) 1000x【4】…………78 Fig. 2-22 The effect of pressure on the solubility of hydrogen in molten aluminum【24】……………………………………………….79 Fig. 2-23 NaCl-KCl系之組成對熔點的影響。圖中曲線為液相線【32】……….......................................................79 Fig. 2-24 Liquid surface of the KCl-NaCl-NaF system (temperature in ℃ and weight in percent)【26】.………….....80 Fig. 2-25 (a)除渣原理【32】……………………………………………81 Fig. 2-25 (b)(1)濕渣(2)乾渣【32】…………………………………..81 Fig. 2-26 利用放熱反應去除熔渣及減少鋁損失【32】……………….82 Fig. 2-27 噴射添加除渣劑法【32】…………………………………….83 Fig. 2-28 噴射除渣劑法除(1)氫及(2)鹼金屬【32】…………….84 Fig. 2-29 Exchange equilibrium between aluminum and different metal chloridesand metal fluorides at 723℃ based on the eactions Al+3MeX=AlX3+3Me and Al+1.5MeX2=AlX3+1.5Me【25】……85 Fig. 2-30 The exchange equilibrium between magnesium impurities in aluminum and different metal oxides,chlorides,and fluorides at 723℃ using reactions Mg+2MeX=MgX2+2Me and Mg+MeX2=MgX2+Me【25】……....................................86 Fig. 2-31 The effects of thicker oxide film and composition of molten salts on the change of shape during melting at 740℃【29】…………………………...................................87 Fig. 2-32 Mechanisms for oxide film removal from the metal surface by molten salts【29】………………………………………..88 Fig. 2-33 Effect of interfacial tension gradient on the removal of oxide film【29】..........................................88 Fig. 2-34 The stripping force induced by the interfacial gradient【29】…………….....................................89 Fig. 2-35 Crevice corrosion at the metal/oxide interface in molten salts【29】…….......................................89 Fig. 2-36 氣體種類及除氣方法對除氣效率的影響【32】…………….90 Fig. 2-37 氣泡尺寸對除氣效率的影響【32】………………………….91 Fig. 3-1 The dimensions of JIS-5202 Permanent Boatmold….....92 Fig. 3-2 The process for T6 reatment……………………………...93 Fig. 3-3 The dimensions of tensile test bars…………………….93 Fig. 4-1 (a)∼(e)未除氣的各種合金冷激試片氧化膜巨觀分佈圖…94 Fig. 4-2 Al-7Si合金減壓試片孔洞巨觀分佈圖…………………………96 Fig. 4-3 未除氣的Al-7Cu合金減壓試片孔洞巨觀分佈圖………………97 Fig. 4-4 未除氣的A356.2合金減壓試片孔洞巨觀分佈圖………………98 Fig. 4-5 不同合金冷激片霧化區(氧化膜)面積率從爐頂到爐底的變化情形….......................................................99 Fig. 4-6 不同合金冷激片顆粒﹙孔洞﹚從爐頂到爐底的變化情形……99 Fig. 4-7 鋁屑含量不同,冷激片霧化區(氧化膜)面積率從爐頂到爐底的變化情形………………………………………………………………..100 Fig. 4-8鋁屑含量不同,冷激片顆粒﹙孔洞﹚從爐頂到爐底的變化情形………....................................................100 Fig. 4-9 Area counts of oxide film in alloy without degassing treatment﹙total observed area about 2123.7 mm2﹚…………….101 Fig. 4-10 未除氣的A356.2+15%chips合金減壓試片孔洞巨觀分佈圖.102 Fig. 4-11 未除氣的A356.2+30%chips合金減壓試片孔洞巨觀分佈圖.103 Fig. 4-12 加入鋁屑後A356.2合金的氧化膜剝離機制…………………104 Fig. 4-13 除氣後,冷激片霧化區(氧化膜)面積率從爐頂到爐底的變化情形…........................................................105 Fig. 4-14除氣後,冷激片顆粒﹙孔洞﹚從爐頂到爐底的變化情形….105 Fig. 4-15 經過除氣後A356.2合金氧化膜剝離機制……………………106 Fig. 4-16 除氣前後,冷激片氧化膜面積率從爐頂到爐底的變化情形107 Fig. 4-17 除氣前後,冷激片顆粒﹙孔洞﹚從爐頂到爐底的變化情形107 Fig. 4-18 (i∼vi)未除氣的Al-7Si合金冷激片上霧化區(氧化膜)巨觀分佈圖(隨著採樣從爐頂到爐底的變化)……......................108 Fig. 4-19 Area counts of foggy area in Al-7Si alloy without degassing treatment﹙total observed area about 2123.7 mm2﹚.110 Fig. 4-20 (i∼vi)除氣後的Al-7Si合金冷激片上霧化區(氧化膜)巨觀分佈圖(隨著採樣從爐頂到爐底的變化)…………….………………...111 Fig. 4-21 Area counts of foggy area in Al-7Si alloy with degassing treatment﹙total observed area about 2123.7 mm2﹚.113 Fig. 4-22 除氣後的Al-7Si合金減壓試片孔洞巨觀分佈圖……………114 Fig. 4-23 (i∼vi)未除氣的Al-7Cu合金冷激片上霧化區(氧化膜)巨觀分佈圖(隨著採樣從爐頂到爐底的變化)………………………………..115 Fig. 4-24 Area counts of foggy area in Al-7Cu alloy without degassing treatment﹙total observed area about 2123.7 mm2﹚.117 Fig. 4-25 (i∼vi)未除氣的A356.2+0%chip合金冷激片上霧化區(氧化膜)巨觀分佈圖(隨著採樣從爐頂到爐底的變化)………………………118 Fig. 4-26 (i∼vi)未除氣的A356.2+15%chip合金冷激片上霧化區(氧化膜)巨觀分佈圖(隨著採樣從爐頂到爐底的變化)……..……........120 Fig. 4-27 (i∼vi)未除氣的A356.2+30%chip合金冷激片上霧化區(氧化膜)巨觀分佈圖(隨著採樣從爐頂到爐底的變化)……..………………122 Fig. 4-28 Area counts of foggy area in A356.2 alloy without degassing treatment﹙total observed area about 2123.7 mm2﹚.124 Fig. 4-29 Area counts of foggy area in A356.2+15%chip alloy without degassing treatment﹙total observed area about 2123.7 mm2﹚…………………….......................................124 Fig. 4-30 Area counts of foggy area in A356.2+30%chip alloy without degassing treatment﹙total observed area about 2123.7 mm2﹚…………………….......................................125 Fig. 4-31 (i∼vi)除氣後的A356.2合金冷激片上霧化區(氧化膜)巨觀 分佈圖(隨著採樣從爐頂到爐底的變化)………..……………………..126 Fig. 4-32 Area counts of foggy area in A356.2 alloy with degassing treatment﹙total observed area about 2123.7 mm2﹚.128 Fig. 4-33 (i∼vi)除氣後的低鍶A356.2合金冷激片上霧化區(氧化膜)巨觀分佈圖(隨著採樣從爐頂到爐底的變化)…………..……………..129 Fig. 4-34 Area counts of foggy area in A356.2 (with low Sr) alloy with degassing reatment……………………………………….131 Fig. 4-35 除氣後的A356.2合金(high Sr)減壓試片孔洞巨觀分佈圖.132 Fig. 4-36 除氣後的A356.2合金(low Sr)減壓試片孔洞巨觀分佈圖…133 Fig. 4-37 A356.2鋁液澆鑄B108模,試片取自過濾片前流路,超音波震盪 後的氧化膜形態與分析…………………………………………………..134 Fig. 4-38 A356.2鋁液澆鑄B108模,試片取自過濾片前流路,超音波震盪後的氧化膜形態與分析……………………………………………………135 Fig. 4-39 經由KF fluxing處理後的A356.2冷激片,取自超音波震盪後溶液殘留顆粒之SEM及EDAX分析………………………………………...136 Fig. 4-40 (a)Al-7Si合金薄試片破斷後,氧化膜形態及成份分析:長條形氧化膜......................................................137 Fig. 4-40 (b)Al-7Si合金薄試片破斷後,氧化膜形態及成份分析:團塊型氧化膜………………………………………………………………………138 Fig. 4-41 Al-7Si合金薄試片破斷後,團塊型氧化膜形態(a)50X(b)500X………..................................................139 Fig. 4-42 (a)不同鋁合金經由氟化物(KF)fluxing反應後所產生的浮渣…………..................................................140 Fig. 4-42 (b)不同鋁合金經由氟化物(NaF)fluxing反應後所產生的浮渣………....................................................141 Fig. 4-43 (a)不同鋁合金經由氯化物(KCl)fluxing反應後所產生的浮渣………....................................................142 Fig. 4-43 (b)不同鋁合金經由氯化物(NaCl)fluxing反應後所產生的浮渣………....................................................143 Fig. 4-44 (a)不同鋁合金經由碳酸物(K2CO3)fluxing反應後所產生的浮渣……......................................................144 Fig. 4-44 (b)不同鋁合金經由碳酸物(Na2CO3)fluxing反應後所產生的浮渣……......................................................145 Fig. 4-45 A356.2+KF反應後浮渣X-ray繞射分析圖……………………146 Fig. 4-46 A356.2+KCl反應後浮渣X-ray繞射分析圖………………….147 Fig. 4-47 Al-7Cu+K2CO3反應後浮渣X-ray繞射分析圖……………….148 Fig. 4-48 Al-7Si+KF反應後浮渣X-ray繞射分析圖……………………149 Fig. 4-49 Al-7Si+NaF反應後浮渣X-ray繞射分析圖………………….150

    參 考 文 獻
    1. Polmear, "I.J.Light Metals" ,E.Arnold Publishers,London.
    2. G. Lesile Armstrong, Robert D. Luckett, " Aluminum Die Casting Alloys ", Die casting engineer, January-February 1984, pp.10-16.
    3."Standard Specification for Aluminum-Alloy Permanent Mold Casting",
    ASTM B108-87
    4."Solidification Craracteristics of Aluminum Alloys ", Vol. 2, Foundry Alloys,
    pp. 45.
    5. B. Closset, J. E. Gruzleski, "Mechanical Properties of A356.0 Alloys Modified with Pure Strontium", AFS Transactions, Vol.31, 1982, pp. 453~464.
    6. 樊翔雲,林招松,潘永寧,"凝固冷卻參數對擠壓狀態A356鋁合金顯微組織與機械性質的影響",中華民國鑄造學會七十八年度論文發表會論文集。
    7. G. K. Sigworth, M. M. Guzowski, "Grain Refining of Hypoeutectic Al-Si Alloys", AFS Transactions, 1985, pp.907-912.
    8. D. Apelian, G. K. Sigworth, K. R. Whaler, "Assessment of Grain Refinment and Modification Of Al-Si Foundry Alloys By Thermal Analysis", AFS Transactions, 1984, pp.297-307.
    9. D. Apelian, J. J. A. Cheng, "Al-Si Processing Variables: Effect on Grain Refinment and Eutectic Modification", AFS Transactions, 1986, pp.797-808.
    10. T. J. Hurley, R. G. Atkinson, "Effect of Modification Practice on Aluminum A356 Alloys", AFS Transactions, 1985, pp.291-296.
    11. R. D. Kassing, J. N. Schweitzer, F. L.Wuetig, "Sodium Versus Strontium for the Modification of Hypoeutectic Aluminum-Silicon Alloys", AFS Transactions, 1979, pp.359-366.
    12. 邱弘興,廖高宇,潘永寧,"經調質及細化處理之A356鋁合金其冒口補充效率之研究",中華民國鑄造學會七十九年度論文發表會論文集。
    13. C. R. Loper, "Fluidity of Aluminum-Silicon Casting Alloys", AFS Transactions, Vol.47, 1992, pp.533-538.
    14. S. Okada, N. Fujii, A. Goto, S. Moroimoto, T. Yasuda, "Development of a Fully Automatic Squeeze Casting Maching", AFS Transactions, Vol.16, 1982, pp.135-146.
    15. Shunsaku Komatsu, Yoshinobu Kanoh, "Development and MassProduction of Squeeze Casting Technique", 鑄物, 第64卷(1992)第3號。
    16. Yasuhisa Kaneko, Hideki Murakami, Kunio Kuroda, Shingo Nakazaki, "Squeeze Casting of Aluminum", Die casting engineer, May- June 1979, pp.26-38.
    17. G. K. Sigworth, "Refinement of Hyporeutectic Al-Si Alloys", AFS Transactions, Vol.82, 1987, pp.303-314.
    18. H. Iwahori et al, "Occuring Behavior of Porosity and Feeding Capabilities of Sodium- and Strontium-modified Al-Si Alloys", AFS Transactions, Vol.79, 1990, pp.167-173.
    19. Lu Weihua, Wang Ruyao, "Microstructure and Mechanical Behavior of Nodular Silicon Al-Si Alloy ", Proceedings of the Fifth Asian Foundry Congress, AFC-5.
    20. John E. Gruzleski, Bernard M. Closset, "The Treatment of Liquid Aluminum-Silicon Alloys ", The American Foundrymen’s Society, Inc.1990.
    21. R. R. Jeng, C. Y. Ma, T. S. Chen, Y. L. Lin, C. T. Chang, Proceeding of 1987 Chinese Annual Casting Conference, No.144, 24(1987).
    22. D. Argo, J. E. Gruzleski, "Porosity in Modified Aluminum Alloy Castings", AFS Transactions, 1988, pp.65-74.
    23. G. K. Sigworth, Exton, "A Scientific Basis For Degassing Aluminum Alloy Casting", AFS Transactions, Vol.95, 1987.
    24. 翁震杰,"壓力對鋁合金凝固現象之影響",鑄工,第77期,民國82年6月,第54-59頁。
    25. T. A. Utigard, K. Friesen, R. R. Roy, J. Lim, A. Silny, C. Dupuis, "The Properties and Uses of Fluxes in Molten Aluminum Processing", JOM, November 1998, pp.38-43.
    26. B. P. Cochran, M. L. Fenyes, J. L. Jeanneret, R. P. Mulac, "Flux Practice in Aluminum Melting", AFS Transaction, 1992, pp.737-743.
    27. C. Z. Lee, "Solid Fluxing Practices for Aluminum Melting", Modern Casting, July 1992.
    28. Paul N. Crepeau, "Molten Aluminum Contamination:Gas , Inclusions and Dross ", Modern Casting, July 1997, pp.39-41.
    29. Jian Ye, Yogeshwar Sahai, "Interfacial Behavior and Coalescence of Aluminum Drops in Molten Salts ", Materials Transactions JIM, Vol.37, No.2, 1996, pp.175-180.
    30. Raja R. Roy, Yogeshwar Sahai, "Coalescence Behavior of Aluminum Alloy Drops in Molten Salts ", Materials Transactions JIM, Vol.38, No.11, 1997, pp.995-1003.
    31. Raja R. Roy, Yogeshwar Sahai, "The Role of Salt Flux in Recycling of Aluminum ", Light Metals, The Minerals, Metals & Materials Society, 1998, pp.1237-1243.
    32. 李勝隆,"鑄鋁之熔煉實務要旨",國立中央大學機械工程系。
    33. 郭景元,"Al-Si-Mg-Cu合金擠製鑄件機械性質之最佳化研究",國立中央大學機械工程研究所碩士班論文,桃園,民國87年7月。
    34. 徐維駿,"Al-7Si-XMg合金氧化膜之診斷與分析",國立中央大學機械工程研究所碩士班論文,桃園,民國88年7月。
    35. 蔣正福,"A356鋁合金擠壓鑄造製程參數對機械性質之最佳化研究",國立中央大學機械工程研究所碩士班論文,桃園,民國88年7月。
    36. C. Nyahumwa, N. R. Green, J. Campbell, "Effect of Mould Filling Turbulence on Fatigue Properties of Cast Aluminum Alloys ", AFS Transactions, Vol.102, 1998, pp.215-224.
    37. 黃立伍,"鋁合金中氧化膜的診斷與分析",博士學位論文資格考,桃園,民國89年1月。
    38. Li-Wu Huang, Wei-Jin Shu, Teng-Shih Shih, "Diagnose and Analyze Oxide Film in Aluminum Castings ", AFS Transactions, Vol.108, No.040, 2000, accepted.
    39. N. R. Green, J. Campbell, "Influence of Oxide Film Filling Defects on the Strength of Al-7Si-Mg Alloy Castings", AFS Transaction, Vol.114, 1994, pp.341-347.
    40. 黃振賢,"機械材料",文京圖書出版,台北,民國79年9月,第293-295頁。

    QR CODE
    :::